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 Section 1 

Systems Engineering 
 

This text begins with a one-chapter section describing systems engineering. There are many 
definitions of  systems engineering, so I add several of my own hoping to clarify rather than confuse. 
My definitions concentrate on what a systems engineer does and how the systems engineer relates to 
other people. 
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 1 Systems Engineering is... 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

My first question in a text about systems engineering is, “What is systems engineering?” This 
is a fair question, and one that I think we should consider. 

I started my professional life writing computer programs. After a few years of  programming, 
I took on the title of  “software engineer.” That sounded good and, considering I had a degree or 
two in engineering, seemed appropriate. I wasn’t really sure what distinguished a programmer from a 
software engineer, but I was young and impressionable and liked the title. I was a software engineer 
and I had colleagues called hardware engineers. Software and hardware pretty much covered 
everything as what else is there? Then one day I heard the job title “systems engineer.” I wasn’t sure 
what that was, but it sounded like something better or something that would receive a higher pay 
than either a software or hardware engineer. 

I wandered about asking people what systems engineering was. I even took a one-week class 
titled “systems engineering.” My questions about systems engineering prompted plenty of  blank 
stares and a few, “Systems engineering is what we are doing now. So get to work.” 

Blank stares and admonitions to “get to work” didn't do me much good. I kept looking for 
that definition that would click in my mind and spur me on to great things. 

The best definition I found at the time was: 
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Almost no one agrees what systems engineering is, but most engineers feel that they are 
doing it.  

(source unknown) 

This wasn’t much, but it was something to go on. 

I continued my search and my work. Along the way I found several definitions that I 
studied, but didn’t like much. The next few pages show and discuss those. 

A Definition 
Shown below is a definition that I found in an IEEE publication [IEEE]. I added the 

numbers inside the parentheses to help refer to my comments below. Please take a moment (or ten) 
to read and contemplate this definition. 

There are probably more (1) definitions of  “Systems Engineering” than there are AESS 
members. In its simplest form (2) systems engineering is the design of  the whole as 
opposed to the design of  the parts. The vast number, complexity and diversity of  
elements can (3) overwhelm and degrade system performance and reliability. Embedded 
processing and software can be both a boon and a bane. A systems engineer analyzes and 
optimizes an ensemble of  elements that relate to the flow of  energy, mass and 
communications into a design that performs the desired function. “Systems engineering” 
is used herein to cover a very broad spectrum of  processes and controls to engineer a 
product at the many levels required to satisfy all aspects of  the original requirement. Our 
definition is not intended to either include or exclude systems engineering and integration 
as used in the computer field. In any case, systems engineering is the application of  solid 
engineering principles to design and develop a large enterprise within cost and schedule 
to satisfy the needs of  the ultimate user. It involves conceptualization, design, 
development, test, implementation, approval/certification and operation (including 
human factors) of  a system. In essence, systems engineering is a problem-solving 
discipline for the (4) modern world. 

Some commentary on this definition. For (1), I agree whole-heartedly. There are many 
definitions of  systems engineering. I, however, don’t agree that the authors of  the quoted paragraph 
have to contribute yet another one. 

For (2), I agree once again. This is a common definition that people utter when someone 
asks repeatedly for some clarity. “Systems engineering is the design of  the whole system.” I liked that 
definition the first few dozen times I heard it. My fondness waned with time, however, as I struggled 
to find a whole system that needed designing. 

For (3), I am overwhelmed with the number, diversity, and complexity of  the words in this 
definition. 

For (4), while someone may not have used the term “systems engineering” until recently, I 
think that people did build large complex systems long before now. See, for example, the great 
pyramids, the great wall of  China, and a few other large and complex systems that existed before the 
modern era. 
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Another Definition 
This definition is from INCOSE, the International Council on Systems Engineering 

[INCOSE]. 

Systems Engineering is an (1) interdisciplinary approach and means to enable the 
realization of  (2) successful systems. It focuses on defining customer needs and required 
functionality early in the development cycle, documenting requirements, then proceeding 
with design synthesis and system validation while considering the (3) complete problem: 

 Operations 

 Cost and Schedule 

 Performance 

 Training and Support 

 Test 

 Disposal 

 Manufacturing 

Systems Engineering (4) integrates all the disciplines and specialty groups into a team 
effort forming a structured development process that proceeds from concept to 
production to operation. Systems Engineering considers both the business and the 
technical needs of  all customers with the goal of  providing a quality product that (5) 
meets the user needs. 

Some commentary on this definition. For (1), “interdiscip...” this is one of  those words that 
when I read it I feel as if  someone is rubbing chalk across my teeth. Ouch! It is quite painful for me 
to keep reading. 

For (2), well at least we are aiming for success. I have often seen projects that were instead 
aiming for full employment of  all engineers in America. 

For (3), once again, we are considering the complete problem. I think that is a good 
objective. I often, however, become lost while trying to understand how to do this in real life. 

For (4), somehow a “discipline” is going to combine different groups of  people into a team. 
I don’t know how a discipline can do that. I think people who are organized, caring, and disciplined 
may be able to do that. 

For (5), I like this part. Let’s try to meet the needs of the user. That is why we try to build 
systems. Why do we have to wait until the end of  the half-page definition to reach the good part? 

A Non-Definition 
The previous two definitions were typical of  what I found while trying to describe systems 

engineering. I was about to quit my search, when I found something else. Richard Thayer, whom I 
had met in a seminar years earlier, wrote a paper on software systems engineering [Thayer]. Thayer 
explained systems engineering in terms of  what a systems engineer does as opposed to what other 
people do. 
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For example, the project manager does: 

 planning 

 organizing 

 staffing 

 directing 

 controlling 

The systems engineer may help with some of  the project planning, but he merely helps – he 
is not responsible for it. In a similar vein, the systems engineer may help organize and direct the 
project, but only as a helper. 

Thayer continued his approach by contrasting the systems engineer’s job against the jobs of  
other engineers.  

The systems engineer does not design software. That is the job of  the software engineer. 

The systems engineer does not design circuitry. That is the job of  the hardware engineer. 

The systems engineer does not write computer programs. That is the job of  the programmer. 

The systems engineer doesn’t test the system. That is the job of  the tester. 

I could continue on with all the important and necessary tasks that people do on a project 
that the systems engineer doesn’t do.  

So, what does the systems engineer do? 

The systems engineer ensures that the product satisfies the customer1. 

I once said this while leading a seminar at a conference. One attendee objected vehemently, 
“It is every one’s job to satisfy the customer! I want to hear you say that that is everyone’s job!” 

I sheepishly agreed. Yes, each person working on the project strives to contribute in a way 
that satisfies the customer. What I want to emphasize is that the hardware engineer designs a bridge 
or engine or circuit that works well. The systems engineer ensures that the hardware engineer 
designs the right bridge or engine or circuit. There is a difference between the two tasks. 

The Ten-Pound Pamphlet 

To illustrate the value of  having a person responsible for satisfying a customer, allow me to 
tell a story of  a project where we didn’t have a systems engineer. I could tell many such stories as I 
have worked on many such projects – none of  them ended well. 

                                                
1  I use the word “customer” in this definition. Builders and marketers of products differentiate groups 

of people with words like “client,” “user,” and “customer.” The client provides the money for the project that builds the 
product. The customer represents all those who will receive the product. The user actually uses the product. These 
distinctions are important in some contexts. In this book, however, I shall group these and describe them with the word 
“customer.” 
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The goal on this project was to deliver a career guide. The guide would show a progression 
from entry-level to expert in all the occupations in my organization. New employees could use this 
guide as an aid in their career decisions. 

We did everything right on this project. Several people from each occupation gathered and 
discussed their careers, what they did, what they wished they knew when, and what they believed 
people at each level in an occupation should be able to do. We employed facilitators to help us 
surface and document what we knew. 

We documented what we knew. We created page after page of  tables with tiny print in rows 
and columns. We explained everything in painful detail. 

The result was well organized. A person could take the pages, find the right table, the right 
row, the right column, and make little check marks next to the classes, characteristics, and 
capabilities. Once all the little boxes were filled with check marks, the person would have completed 
an excellent career. 

There was one problem with this career guidebook – it filled a large, ten-pound, three-ring 
binder. No one ever used the career guidebook. The customers looked at it once and walked away 
never to open it. 

We did each individual task correctly. The employee groups shared information well, the 
facilitators helped these groups share, the writers wrote good prose, the publisher made appealing 
pages, the binders were attractive and had ample capacity. No one, however, kept checking with the 
customer to ensure the career guidebook would be satisfying. No one did the systems engineer's 
task. 

What the customer – the employees – wanted was a little one-page, folded pamphlet with 
brief  summaries and pointers to other information. 

For lack of  a systems engineer, the career guide project was a dismal failure that wasted 
thousands of  person hours of  effort and who knows how much money. 

A Little More Definition 
Now that I have written the one-and-only statement that defines the subject in easy-to-

understand language, allow me to supplement the definition. I will do this with a story I once heard 
about farmers and potatoes. 

A Lazy Potato Farmer 

There once were several potato farmers. One of  the big tasks for the farmers was to sort 
their potatoes. You see, once the farmers arrived at the potato market with their potatoes, the potato 
buyers would buy potatoes by size. The big potatoes garnered one price per pound, the not-so-big 
potatoes another price per pound, and finally the small potatoes another price per pound. 

Because the potato farmers wanted to be ready for the buyers at the market, they judiciously 
sorted their potatoes on their farms. All the picked and cleaned potatoes were laid in front of  the 
farmer and the farm hands. They worked hard to quickly separate the potatoes into three piles – big, 
not-so-big, and small. They then loaded the potatoes by size into the farmer’s truck for transport 
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into town and the waiting potato buyers. They first loaded the small potatoes, then piled the not-so-
big potatoes on top of  them, and finally the big potatoes on top of  the pile. 

All the farmers did the sorting by size, except one. He seemed to be a lazy farmer because he 
didn’t sort his potatoes by size. He and his helpers just loaded all the potatoes into the farmer’s truck 
and he drove to town with his unsorted potatoes. 

As if  by magic, when the lazy farmer arrived in town with his truckload of  potatoes, the 
potatoes were sorted by size – just like those of  the farmer’s who worked so hard to sort the 
potatoes before loading them onto their trucks. 

One day, the other farmers discovered that the one farmer was not sorting his potatoes. He 
was skipping a necessary step, but everything worked. Someone asked the farmer how his potatoes 
were sorted by size even though he and his farm hands did no sorting. 

“Simple,” replied the wise (not lazy) farmer, “I drive to town on a bumpy road.” 

The vibrations of  the bumpy road caused the larger potatoes to bubble to the top and the 
smaller potatoes to settle to the bottom of  the truck. The ride to town sorted the potatoes, so the 
farmer didn’t have to. 

This farmer was a systems engineer. He performed another important systems engineering 
task: 

The systems engineer examines the entire system and applies a little wisdom. 

At first glance, bringing potatoes to market has these steps: 

(1) dig the potatoes 

(2) clean the potatoes 

(3) sort the potatoes 

(4) load the potatoes on the truck (by size) 

(5) drive to town 

(6) sell the potatoes by size 

Upon further examination, bringing potatoes to market has these steps (notice step 5): 

(1) dig the potatoes 

(2) clean the potatoes 

(3) sort the potatoes 

(4) load the potatoes on the truck (by size) 

(5) drive to town (wherein the vibrations of  the road sorts the potatoes by size) 

(6) sell the potatoes by size 

The systems engineer farmer noticed that steps (3) and (5) were redundant. He applied some 
wisdom and eliminated step (3). Hence, this farmer did these steps: 

(1) dig the potatoes 
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(2) clean the potatoes 

(4) load the potatoes on the truck 

(5) drive to town (wherein the vibrations of  the road sorts the potatoes by size) 

(6) sell the potatoes by size 

Therefore, while ensuring that the system (sorted potatoes brought to market) satisfies the 
customer (the potato buyer), the systems engineer examines the entire system and applies a little 
wisdom. 

The not-to-do List 
The systems engineer farmer didn’t do one costly and time-consuming step. He understood 

that he and his helpers could have sorted the potatoes before loading them on the truck, but he 
chose not to do that. While the other farmers had a solid “to do” list, this farmer had a not-to-do 
list. 

There are many tasks that an engineering team can perform while building a system. There 
are many features that a team can put into a system that they are building. Not all these tasks and 
features are necessary for satisfying the customer. Some tasks are just what I call “jobs programs for 
engineers.” They are nice tasks; they add some value; they give the engineers something to do, but 
they are not necessary. 

Many of  these unnecessary tasks greatly increase the cost of  the system. People make 
mistakes at some rate (one mistake per X hours of  work). When engineers do more work on a 
product, they make more mistakes. Finding and correcting these mistakes is one of  the most costly 
activities on any project. Therefore, to increase the cost of  a product, add unnecessary work. To 
reduce time and cost, use a not-to-do list like the potato farmer. 

A good systems engineer will have a not-to-do list that shows what tasks he won’t do and 
what features he won’t put into this system. Some of the tasks that I have on my not-to-do lists are: 

 measure how many widgets we make during the morning hours of  the day 

 measure how many widgets we make during each of  the four seasons of  the year 

 correlate broken widgets to when the widgets were made (morning summer, non-morning 
fall, etc.) 

 gather 50 people in a one room at one time to offer suggestions of  what we should measure 

I have a lot of  measuring tasks on my not-to-do list. One reason is that most of  the systems 
I have built were low-volume systems, i.e. we made ten systems total. If  we were making and then 
repairing ten million systems, the measures mentioned above might be good to put on the “to do” 
list. 

Some of  the features I have put on not-to-do lists include: 

 shorten the time needed to use the system by one hour 

 shorten the time needed to learn how to use the system by one hour 
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These items appeared on my not-to-do lists because of  simple return-on-investment 
calculations. The customers used the system two times a year for a total of  eight hours. The two 
features on the list would have increased the cost of  building the system by $1 Million. Since the 
customers were paid $20 per hour, we saved $80 a year, so the $1 Million in added cost to build 
would be paid back in... well, you see the point. 

These example tasks and features went on my not-to-do lists because they didn’t make sense 
in the context of  my projects and systems. That is one way in which the systems engineer examines 
the entire system, he considers the context of  the project and system and applies a little wisdom. 

Common Sense and Common Practice 
At this point in the chapter I can hear my mother, “but this is just common sense.” (My 

mother often chided me about common sense.) Of course you ensure that the system satisfies the 
customer. Of course you look at the whole thing and be as wise as you can. Who doesn’t know that? 
Who doesn’t do that? 

Most people I have seen in 20-something years working on systems know these things. It is 
unfortunate that most people I have seen during that time don’t do these things. Systems 
engineering is one of  those things that is common sense, but not common practice. 

One reason systems engineering is not commonly practiced is that people assume that 
someone else must be busy satisfying the customer and applying wisdom. Some manager must be 
doing these tasks. 

This “the manager must be doing this” is one of  the problems with systems engineering. 
“Real engineers” push the systems engineering task to managers – those people who aren’t smart 
enough to be real engineers. This may be true in some cases, but in those rare projects where I saw a 
competent person assigned the systems engineering role, that person was challenged, worked hard, 
and the entire project and all the “real engineers” benefited. 

Systems engineering doesn’t apply to all projects. I believe that all projects can benefit from 
the practices of  systems engineering. I also believe that there are projects where concentrating on 
systems engineering doesn’t make economic sense. 

Here are my rules of  thumb on when to make common sense common practice. 

(1) Don’t exert much systems engineering when one or two people can carry all the 
technical and task details in their heads. 

(2) Use systems engineering when the system and project are bigger than any two people. 

I haven’t worked on many projects that fall into the first category. The vast majority of  
projects are too complex, too difficult, and too big to carry in the heads of  the two smartest people 
on the project. This wasn’t the impression that we – especially the two smartest people – had at the 
time. Later, however, and often years later, we learned that we were wrong. The maintenance mess 
and expense sitting in our laps showed all the issues that we didn’t see and didn’t solve. 

Closing Thoughts 
I believe I now understand what a systems engineer does. I express the systems engineer's 

tasks as  
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The systems engineer ensures that the product satisfies the customer. 

and 

The systems engineer examines the entire system and applies a little wisdom. 

I needed many years of  puzzled looks to arrive at these two statements. Perhaps this book 
will allow you to understand systems engineering without all the years of  frustrated longing; that is 
one of  my hopes. 

Now that I think I understand systems engineering, I just have to worry about when and 
how much to apply it. The “when” is starting to be clear in my mind: 

Use systems engineering when the system and project are bigger than any two people. 

If  the two smartest people in the room have any doubts, use systems engineering.  

The remainder of  this book contains my current thoughts on “how much” systems 
engineering to use. I describe what I believe is enough systems engineering for the vast majority of  
systems that people build. 

Please use the techniques herein with thought and care; thought for the system at hand and 
care for the people. 

Suggested Exercises 
1. What are some differences between the systems engineer and the customer? 

2. Given the two short definitions in this chapter, have you ever been a systems engineer? 
What did you do? 

3. Consider any system that you participated in building. Who was responsible for satisfying the 
customer? What did they do? 

4. Consider any system that you participated in building. Who was responsible for examining 
the entire system and applying wisdom? What did they do? 

5. Create a not-to-do list of  tasks that you won’t do today. Create a not-to-do list of  tasks that 
you won’t do while building your next product. 

6. At this point in the text, what do you think are some of  the tasks a systems engineer does? 
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 Where We are Now 

 

We are still at the beginning of  this book. Now we have a few definitions and guidelines to 
use in systems engineering. These will serve as themes or foundations for the rest of  the book. 
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 Section 2 

Systems Engineering Techniques 
 

The first chapter defined what the systems engineer does in two statements: 

(1) The systems engineer ensures that the product satisfies the customer. 

(2) The systems engineer examines the entire system and applies a little wisdom. 

In this section, we look at techniques that help the systems engineer accomplish these two 
over-arching tasks. 
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 2 The Requirements  

 

They Want What? 

 

 Early in my career, I often saw one version or another of  this tire-swing cartoon. I hated it. I 
wondered how competent people would mess up so badly. The cartoon had to be a silly joke that 
wasn’t based on any reality. 

I was wrong. The tire-swing cartoons are based on reality. I’ve contributed to the lore of  
building systems that didn’t come close to satisfying the customer. I’ve built systems without any 
systems engineering.  
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To satisfy the customer, the systems engineer needs to know what system to build. The 
systems engineer needs to understand the requirements for the system.  

Great Books on Requirements 
This isn’t a book on requirements. I would like to present everything the systems engineer 

needs to know about requirements work in ten pages. I don’t know how to do that and trying would 
only frustrate both the reader and me. 

Instead, I will mention three great books on requirements. Given the time, please look at 
them. These books will make the task of  systems engineering much easier. I write that confidently as 
they have greatly aided me. 

“Exploring Requirements: Quality Before Design” by Donald C. Gause and Gerald M. 
Weinberg (Dorset House Publishing, 1989). 

The authors emphasize people in this book. The systems engineer (a person) needs to talk 
with the users (also persons) to work with requirements. Conversations among persons, however, 
are fraught with trouble. Hence, the authors provide excellent background on these perils and how 
to work through them. 

I especially like the book's chapter on context-free questions – those questions that the 
systems engineer can ask regardless of  the context of the system. 

The context-free questions about the product (the system) include: 

 What problems does this product solve? 

 What problems could this product create? 

 What environment is this product likely to encounter? 

 What kind of  precision is required or desired in the product? 

The authors also include questions about questions. These include: 

 Am I asking too many questions? 

 Do my questions seem relevant? 

 Are you the right person to answer these questions? 

 Are your answers official? 

 May I write down your answers and give you a written copy to study and approve? 

 Is there anything else I should be asking you? 

 Is there anything you would like to ask me? 

 May I return or call you with more questions later, in case I don’t cover everything this time? 

“Mastering the Requirements Process” 2nd edition by Suzanne and James Robertson 
(Pearson Education, 2006). 

This is the best book on requirements that I have read. The Robertson’s have developed a 
thorough method of  learning, identifying, and managing requirements.  
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I especially appreciate the Robertson’s method of  identifying the requirements on cards. 
Each card holds the necessary information for a requirement. Cards can be excellent in some cases. 
In others, I suggest using a computer as the stack of  cards can become unwieldy. The card concept, 
however, can serve the systems engineer well when entering the requirements into a database. 

“Just Enough Requirements Management: Where Software Development Meets Marketing” 
by Alan M. Davis (Dorset House Publishing, 2005). 

Davis describes his journey in the field of  requirements and documenting requirements. He 
started 30 years ago advocating good requirements documents. He then advocated better documents 
then even better documents. Finally, in this book, Davis recommends a short list of  requirements. The 
list will best address the customer’s needs. 

Davis provides a full description of  requirements and working in the requirements industry. 
His emphasis comes back to the customer. He emphasizes “just enough” of  everything – an attitude 
that partly inspired my text on systems engineering.  

If  you don’t have a lot of  time to study requirements, spend it reading Davis’ book. 

Learning the Requirements 
The first, never-ending step in requirements work is learning the requirements. Some people 

call this exploration, others call it elicitation, others call it interviewing. I use the term “learning” as I 
feel the systems engineer needs the ability to learn from people and situations. 

Learning the requirements never ends. I have built systems where I learned of  new 
requirements on the day we delivered the system. It is easy for me to say that the customers were 
obstinate, immature, lazy, and a bunch of  other things, but they were still the customers and the 
source of  requirements. They may have forgotten a requirement, may have forgotten to tell me 
something, or may have just learned something about what the system should be. Whatever the 
reason, customers may have new requirements on any day of  the project. The systems engineer 
should be ready to learn of  these at all times. 

Requirements come in two basic flavors: (1) functional and (2) non-functional. To obtain 
these two basic items fill in the blanks for these two statements: 

(1) The system shall __________ (do something). 

(2) The system shall be __________ (something). 

The first statement tells the systems engineer what the system shall do; what functions it 
shall perform. 

Examples include: The system shall water plants. The system shall provide electric power to 
appliances. 

The second statement tells the systems engineer what the system shall be; what attributes it 
shall have. 

Examples include: The system shall be large enough for 10,000 acres of  tomatoes. The 
system shall be small and light enough for an elderly woman to use. The system shall be suitable for 
a portable hair dryer. The system shall be powerful enough for a drill that can punch one-inch holes 
in reinforced concrete. 
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The most important requirements for a system come from people. 

The importance of  people in learning requirements hasn’t always been easy for me to accept. 
I often wanted to study some books and papers to learn about a system. That doesn’t work. Instead, 
talk with people. Gause and Weinberg’s book is an excellent source of  techniques and advice on 
how to talk with people about what they want. 

When I learn a requirement from a person, I need to record the person’s name. The 
techniques taught in [Robertson] include a prominent place for the source of  the requirement – the 
person’s name. At some later date, the systems engineer, other engineers, and other people building 
the system will debate the meaning of  a requirement. The only person who really knows what the 
requirement means is the person who provided it. We should discuss the meaning of  the 
requirement with that person. Without the person’s name, I won’t be able to conclude the 
discussion and build a system that satisfies the customer. 

When learning requirements from persons, have them tell stories. Stories supply valuable 
information. The most valuable is that while telling stories, people will reveal their emotions, and 
their emotions will reveal what is significant to them. 

I recently spoke with a customer about how he performed his job (his job was interviewing 
people). This customer “lapsed” into telling me some of  his favorite stories. Instead of  yawning, I 
inched forward in my chair and encouraged him. In the midst of  his stories, I asked if  he had any 
video tapes of  his interviews. I would love to see some of  them. He stopped his stories, exhaled 
loudly, and groaned a long, “No! We do interviews in hotel rooms, and there isn’t enough space for 
a video camera, and it would be too obtrusive, and I don’t know how to set up a camera,” and on 
and on about the disappointments of  not having video and audio recordings of  the interviews and 
how much they would help him review his interviews and help train new people and other helpful 
things. 

That was it. The ability to record the audio and video of  interviews was one of  the most 
important requirements for the new interview system. No one had mentioned that before because 
they were sure it was impossible. We have many challenges facing us in implementing this recording 
system, and I don’t know if  we will be able to overcome them. I do, however, know that recording is 
significant. I learned that by listening to stories and noticing emotion in the stories. 

Another technique in learning requirements from people is to ask why – five times. For 
example, in helping to rearrange an education center’s rooms, the “why” conversation was: 

Customer: I wish I had movable walls in here. 

Systems Engineer: (#1 why) Why do you want movable walls? 

Customer: Movable walls would let me divide this room into smaller classes and still have a 
room large enough for parties. 

Systems Engineer: (#2 why) Why do you want smaller classes? 

Customer: That would allows students at different levels to be in groups with others of  their 
own level. 

Systems Engineer: (#3 why) Why do you want students to be with others of  their own level? 
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Customer: Then the students wouldn’t be so bored in class. 

Systems Engineer: (#4 why) Why do you want the students to not be bored? 

Customer: Then they wouldn’t complain about Mr. Smith the instructor. 

Systems Engineer: (#5 why) Why do you want the students to stop complaining about Mr. 
Smith? 

Customer: Because Mr. Smith is boring, and when they complain it makes me realize that I 
should fire Mr. Smith. 

Aha! Instead of  building a system with movable walls, I now see that we need a system that 
will remove Mr. Smith, teach Mr. Smith how to not be so boring, introduce more instructors to the 
facility that are not boring, or do all these things. The constant “why” questions helped me learn the 
real requirement. If  I had taken the “movable walls” as the one and only requirement, I would have 
built a system that did not satisfy the customer. 

Identifying the Requirements 
The next, and again a never-ending, step in requirements work is to identify the 

requirements. I use the term “identify.” Other terms that may apply include writing, documenting, 
storing, and recording. Each of  those latter terms infers a technology or specific method of  keeping 
the requirements. I like the term “identify” because it reminds me of  a systems engineer pointing 
across a room and saying, “Look there! Those are the requirements we have identified (so far).” 

There are several methods available to keep the identified requirements. For many years, the 
1980s through the mid-1990s for me personally, systems engineers identified requirements in books 
or documents. The classic was the SRD (System Requirements Document). We also had a Hardware 
Requirements Document and a Software Requirements Document (more about flow down of  
requirements in a later chapter).  

These documents were thick, heavy, impossible to understand, and no one read them. The 
requirements were identified, but only the favorite ones were implemented. Customers weren’t 
satisfied often. 

In the mid-1990s the state of  the art of  identifying requirements employed a sophisticated 
relational database. The systems engineering team would type the requirements into that database. 
The database technology allowed for sorting, linking, printing in nice documents, and other tasks 
where computer technology excels. 

The relational databases were wonderful. They were logical, easy to interface, never forgot 
anything – in short, they behaved like the perfect systems engineer. We loved them so much that we 
soon were spending the majority of  our time with them.  

Well, as the previous section asserted, requirements come from people. Systems engineering 
teams were concentrating so much on the databases that they forgot about the people. The 
customers were ignored and not satisfied. 

A reaction to the thick documents and relational databases are the agile methods of  building 
systems. These methods emphasize working with people in short iterations. A favorite technique of  
identifying requirements is on 3x5 cards pinned to a visible wall. I personally like the cards-on-the-
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wall technique. It brings together people near the wall and increases the conversations among the 
systems engineers and customers. 

The cards-on-the-wall also has its limitations. Rooms have finite wall space, so we have to 
remove cards to make room for more cards. Remembering what was on the wall is difficult. 

I hope that we have arrived at some happy medium. The Robertson’s book recommends an 
excellent method of  using cards for initially identifying the requirements (see Figure 1). Their 
method uses large cards that have enough room to keep many aspects of  each requirement (please 
see their book as I cannot do it justice in a few paragraphs). Use the cards to identify each 
requirement and then enter the information into a computer for later use. The card-first computer-
next method keeps the systems engineer working with people and lets the computer do the 
mundane task of  remembering. 

 

Figure 1 – A Requirements Card from [Robertson] 

 

A systems engineer should take care when identifying requirements. The reason is that the 
requirements will define the system and drive all the work. A common problem in building systems 
is that there are too many requirements. Sources of  the “too many” requirements include engineers, 
customers, and our own lives. 

I have worked with all sorts of  wonderfully creative systems engineers. They have thousands 
of  great ideas in their minds that they want to share while building this particular system for this 
particular customer. The frequent problem is that their wonderfully creative idea has nothing to do 
with this customer and this system. Their creative idea is another, extra requirement. 
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Customers often mention “27-sigma” cases while discussing requirements. “27-sigma” refers 
to something that is 27 standard deviations from the mean (the Greek letter sigma denotes the 
standard deviation in statistics work). I don’t want to diverge into statistics. Suffice it to say that a 
27-sigma case occurs about as often as a total eclipse of  the sun.  

Focusing large amounts of  effort on a 27-sigma requirement is not wise, and recall that a 
primary duty in systems engineering is to apply wisdom. Concentrate on the requirements that the 
customer will use daily. Once (if) those are working in the system, delve into some of  the rare cases 
that may help the customer. 

It isn’t surprising that engineers and customers create extra requirements. Most requirements 
are extras – they are not essential to the form and function of  a system that will satisfy the customer. 
This is true of  much of  what we do in our lives. I have three pair of  blue jeans and since I can only 
wear one at a time, two of  them are extras. I have hundreds of  books on my book shelves. Since I 
can only read one at time, the hundreds less one are extras. 

I digress into blue jeans and books to emphasize something about identifying requirements. 
Identify each requirement dutifully. Pause to discuss if  each requirement is essential. 

A technique that has worked for me in discarding extra requirements is a requirements 
gateway. The gateway is a single place through which each identified requirement must pass. A 
group of  people – systems engineers and customers – examines each requirement candidate and 
makes a binding decision on if  that candidate will be a requirement or be discarded. The 
requirements gateway is also a place where the “essential-ness” of  a requirement is judged. 

Managing the Requirements 
The final never-ending part of  requirements work is managing the requirements. After 

learning and identifying, the systems engineer has a large, complex, intricate set of  requirements. It is 
easy to forget some requirements, overemphasize others, and ignore some we simply don’t like. 
Some requirements change, some are deleted, and some are added. The set of  identified 
requirements needs close attention and diligent management. 

Requirements management involves working closely and continuously with people. Not 
surprisingly, many of  the problems with requirements management come from people trying to 
work with people. 

Learning and identifying requirements are more technical in nature. Technical people gather 
information, draw diagrams, and analyze them to prepare for design. Systems engineers use all their 
technical skills and apply themselves whole-heartedly. In contrast, requirements management is a 
management problem. It involves meetings, reaching agreements face-to-face, and keeping detailed 
records. Systems engineers often see requirements management as a clerical job. 

Regardless of  how distasteful requirements management might be to most systems 
engineers, it must be done. So, how can we ensure that systems engineers do the requirements 
management work? The answer is simple in principle but difficult to do. The answer is one word – 
help. Provide real help to systems engineers in the requirements management area. Real help is not 
threats to “do it right or else.” Real help is realizing that requirements management probably won’t 
be done well and providing the systems engineer with resources and direction. 
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Real help can take several forms. The simplest help is to appoint a full-time requirements 
manager. This is a person who understands technical issues, likes working with people, and is good 
at managing things. The requirements manager performs all the face-to-face and detailed record-
keeping tasks. This person has the personality and temperament to keep the customer happy and the 
technical people out of  trouble. 

Another form of  real help is to clearly state responsibilities. Place a poster in the project area 
that lists who is responsible for what on the project. The responsibilities include who is the systems 
engineer, the requirements manager, and who represents the customer. This reduces the amount of  
changing directions to try to satisfy everyone who is only slightly involved with the system. 

A third way to help in requirements management is in the area of  the requirements gateway. 
This is the same gateway mentioned earlier that decides which candidate requirements become real 
requirements. Any proposed change to the requirements should be reviewed by the people who 
stand in the requirements gateway. The customers change their minds about requirements. There are 
many good reasons for these changes and many bad reasons for them as well. The people working 
the requirements gateway decide if  the desired requirements change and the reason behind it are 
good or bad. They implement change control – a fundamental part of  systems engineering. This is 
where the systems engineer examines the entire system and applies some wisdom. This is not an easy 
task and one that must not be hurried. 

Change costs money. Most people with whom I have worked don’t like to accept that. Any 
requested change needs to be discussed with the cost in mind. The cost of  making the change 
includes the cost of  identifying the change, implementing the change, testing the change, managing 
the changed set of  requirements, and maintaining the changed system. The cost of  all these tasks 
accumulates. Sometimes the change is necessary even given all these costs. Many times, however, 
requested changes are not justified. Most times unjustified changes are accepted because the systems 
engineers fail to show everyone all the costs. Explaining how someone’s great idea is too costly to 
use does not increase the systems engineer’s popularity. Being popular, however, is not one of  the 
systems engineer’s duties. 

Closing Thoughts 
I cannot overemphasize the importance of  requirements to the systems engineer. The 

systems engineer’s job begins with asking the customers what they want – the requirements – and 
ends with handing the customer a satisfying system – one that meets the requirements. 

Requirements work can be described in three never-ending and often cycling parts: 

Learning the requirements, 

identifying the requirements, and  

managing the requirements. 

As important as the requirements are, they are less important than the people describing and 
working them. Listing the requirements and checking them off  one at a time is a good thing for the 
systems engineer to do. It doesn’t, however, always satisfy the customer. Sometimes being that 
thorough and methodical upsets the customer. 
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Wisely apply requirements techniques and stay with the customer – the ultimate judge of  
systems engineering. 

Suggested Exercises 
1. List three additional context-free questions you could ask. 

2. Write three of  the more information-yielding questions you have asked. How have they 
worked? 

3. Consider a requirement that you are working on at this time. Try to attach a name or a face 
to it. What did you feel while doing that? 

4. Think of  a customer's story that led you to an important requirement. How would the 
system you are building be different if  you didn't know that story? 

5. Think of  a requirement that you worked (like movable walls) that turned out to be a person 
requirement (like a boring teacher like Mr. Smith). What did you do with that requirement? 
Did you approach the person? Why or why not? 

6. Consider a low-tech device (like 3x5 cards) that helped you with requirements. Consider a 
low-tech device that only brought problems with requirements. What was the difference 
between these two devices? Do the same exercise considering high-tech devices (like a 
relational database). 

7. Consider an engineer or technician you know who likes to work face-to-face with people. 
How did that person do when working with requirements? Are that person's personality 
traits worth emulating? 

References: 
[Gause] “Exploring Requirements: Quality Before Design,” Donald C. Gause and Gerald M. 

Weinberg, Dorset House Publishing, 1989. 

[Robertson] “Mastering the Requirements Process,” Suzanne and James Robertson, Pearson 
Education, 2006. 

[Davis] “Just Enough Requirements Management: Where Software Development Meets 
Marketing,” Alan M. Davis, Dorset House Publishing, 2005. 
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 Where We are Now 

 

At this point, the systems engineer has the customer's requirements. We know what the 
customer wants, i.e. what will satisfy him (or do we?). 

Now the systems engineer uses these requirements to build a system. It is wise to first build 
the system on paper – with a design.  

A powerful design tool is an architecture. The next chapter discusses architecture and how 
the systems engineer and customer can use architecture to refine the requirements and build a 
satisfying system. 
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 3 Architecture 

 

or what are these leftover parts for? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I know the feeling. Take it apart, fix it, clean it, put it back together, and there are leftover 
parts sitting on the counter. Why can't there be a sign inside the toaster “Little Obscure Parts Go 
Here”? It should be obvious that there are places for parts and parts for places. 

An architecture of  a system is like that. It shows where parts fit and which parts will fit in the 
system. 

Once again, let’s begin with a definition (from http://dictionary.com): 

architecture  –noun 

1. the profession of  designing buildings, open areas, communities, and other artificial 
constructions and environments, usually with some regard to aesthetic effect. Architecture often 
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includes design or selection of  furnishings and decorations, supervision of  construction work, and 
the examination, restoration, or remodeling of  existing buildings. 

2. the character or style of  building: the architecture of  Paris; Romanesque architecture. 

3. the action or process of  building; construction. 

4. the result or product of  architectural work, as a building. 

5. buildings collectively. 

6. a fundamental underlying design of  computer hardware, software, or both. 

7. the structure of  anything: the architecture of  a novel. 

The first definition that has always come to my mind is not the first given. I think of  
architecture as a field of  study and work. Architects design buildings and cities. Architecture is the 
form of  those buildings and cities. 

In relation to a systems engineer, I go to definition 7 – the structure. The architecture of  a 
system is the structure, the form, the skeleton of  the system.  

While all systems have architectures, deliberate architectures work much better than 
accidental ones. Deliberate architectures, those we create on purpose with a purpose, permit the 
systems engineer to place specific parts into the structure of  the system. The systems engineer 
ensures that the parts fit in the system.  

When the parts fit, there are no leftover parts. 

An Architecture 
Figure 1 shows an architecture. This isn’t very impressive (nothing like the National 

Cathedral), and it surely isn’t very complicated (nothing like the National Cathedral). Architectures 
don’t have to be impressive or complex. They are tools the systems engineer can use to apply 
wisdom, and simple tools are often easier to use. 

The architecture of  Figure 1 shows the outline or structure of  a system. The system will have 
three sections – input, process, and output. This structure or outline will allow the systems engineer 
to place parts into the sections. 

The input-process-output architecture of  Figure 1 is also a type of  an architecture. There are 
many systems that use this architecture type. Examples include: 

 data processing 

 word processor (Microsoft Word) 

 food processor (blender) 

 candy manufacturing plant (Snickers) 

 hospital 

 high school 

 health club 
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Figure 1 – The Input-Process-Output Architecture 

 

Each of  those systems has a method to input something, to process the input, and to send 
out the processed input. 

There are many architecture types like the input-process-output architecture of  Figure 1. 
Christopher Alexander’s book [Alexander] is an excellent source of  architecture types. His book 
presents architecture types that have been used many times in homes and communities. I 
recommend systems engineers have a copy of  “The Timeless Way of  Building.” It doesn’t matter if  
your field is data processing or candy manufacturing; the concept of  architecture types and reusing 
architectures is a valuable one for systems engineers. 

Let’s narrow the focus of  this architecture a little. Figure 2 shows the architecture for a 
system of  storing food in a home. The architecture in Figure 2 comes from a customer's basic 
requirement: “I need a system that shall store food in my home.” I have such a system in my home; 
my wife calls it a pantry. Yes, something as simple as a pantry has an architecture, and a systems 
engineer can apply wisdom to it.  
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The input section of  the architecture holds the means by which we put food items into the 
pantry. The process section of  the architecture relates to how the food items are stored (stacking, 
rotating, presenting). The output section of  the architecture concerns how food items are removed 
from the pantry. 

 

 

 

Figure 2 – The Home Food Storage Architecture 

 

Now we have an architecture for a home food storage system. It still is neither impressive 
nor complicated. I hope to show below that it is useful and sometimes powerful. For now, it is 
simply a structure or outline of  a system. 

Some Properties of  an Architecture 
Architectures have several properties that make them useful to the systems engineer. Among 

these are (1) context, (2) fit, and (3) type. I’ll start with context and my own definition: 

Context – noun 

1. the part of  a text or statement that surrounds a particular word or passage 

2. the circumstances in which an event occurs, a setting. 

An architecture provides a setting that surrounds a system. It gives the circumstances in a 
simple form and helps the systems engineer answer: 
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 Where are we? 

 What are we doing? 

 What is our situation? 

If  we cannot answer these questions, we have no architecture, no context, and we are 
clueless. There is an old saying, “a text without a context is a pretext” (a pretext is a lie or false 
statement). I contend that a system without an architecture is a false system. 

An architecture provides fit for the parts of  a system. The concept of  “fit” is paramount to 
me. I have always wanted to know where items fit in the greater scheme of  things. Items could be 
persons (like me, a middle child), processes (why do I have to fill out this form that is exactly like the 
one I filled out five times already today?), emotions (does denial come before anger or after?), and 
physical things (why is it we need a love seat in the den?).  

An architecture provides the “greater scheme of  things.” Items the systems engineer chooses 
can then fit into that scheme. Fit allows the systems engineer to design a system – to select the right 
item for the architecture. 

Finally, an architecture allows the systems engineer to use architecture types. Systems 
engineering may be a relatively new field of  endeavor by its current name. It is not, however, a 
recent practice. People have been creating and using architectures for centuries. These architectures 
or outlines for systems can be used and reused by the systems engineer. The systems engineer “just” 
has to find the type and apply it. Doing so, however, is more difficult than writing that sentence. 

Using an Architecture 
Now let’s use the architecture shown in Figures 1 and 2. What the systems engineer does at 

this point is enter items that fit into the different sections of  the architecture. Figure 3 shows an 
example of  this. I have inserted three items that fit into the Input section, two items that fit into the 
Process section, and three items that fit into the Output section. These eight items show 
possibilities. Each item can fit in its section, but may not be a wise choice. 

Consider the items in the Input section. I have shown three different methods and items that 
could put food into the food storage system process (commonly known as a pantry). These three 
items are (1) I could put the food items into the pantry by myself  (this is what I do now at my 
house), (2) a delivery person could put the food items into the pantry (I would like to do this at my 
house, but those guys cost too much), and (3) I could use a conveyor belt to place the food items 
into the pantry (as an engineer, that sounds cool, but would my wife like it and how much would 
that cost?). 

Notice how a person doing something can be an item in an architecture. Items in the 
sections of  an architecture don’t have to be a machine or a computer. This is an important concept 
for the systems engineer: 

People are parts of  systems, too. 

Many systems engineers find themselves in all sorts of  trouble by forgetting this simple 
concept; I have. 
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Figure 3 – Design Options for this Architecture 

 

Now let’s move to the Process section of  the architecture of  Figure 3. I have entered two 
possible items here. These are (1) the items sit on the shelf  as shuffled by me, and (2) a machine 
arranges the items on the shelf. I like (2). I would love to have a machine (a) put all the beans in one 
part of  the pantry and all the fruit in another, (b) ensure all the food items face the front so I can 
read the labels easily, (c) move the oldest items to the front so I consume them first, and (d) do all 
sorts of  other sorting and presenting for me. 

Finally, consider the Output section of  the architecture. I have three possible items in this 
section that sends the food items out of  the pantry and into my hands. (1) Vending machine slots 
could slide the items out to the bottom of  the pantry where I grab them. (2) A robotic arm could 
reach into the pantry, grab the desired food item, and hold it out to my hand. (3) I could just reach 
in the pantry and grab the item myself. After all, the Process section has arranged the items in an 
easy-to-see, oldest-item-in-the-front manner. 

Notice how each item in each section of  the architecture functions properly, i.e. it fits. I 
could choose any of  the three items in the Input section and satisfy the requirements of  the section. 
They will all perform the function required of  the Input section. Those three items are different and 
have their own good and bad characteristics, but they will all work properly. 

Now consider how the architecture helps the systems engineer examine the entire system 
and apply some wisdom. The architecture with the possible items in each section allows the systems 
engineer to look at the many possible designs of  the system. There are 18 paths through the 
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architecture from the Input section through to the Output section (3 Inputs times 2 Process times 3 
Outputs = 18 paths). Each of  the 18 paths is a design for a system that may satisfy the customer. 

Figure 4 shows one path through the architecture. It shows me putting the food items in the 
pantry, me arranging the items on the pantry, and me taking them out of  the pantry. That is the 
system that exists in my home. That system works properly, i.e. it meets the customer's 
requirements. 

 

Figure 4 – One Path Through the Architecture 

 

I could also build a system using the path through the architecture shown in Figure 5. That 
would use a conveyor belt to load food items, a machine to arrange the items, and a robotic arm to 
give the food items to me. I would love to have that system in my home. Well, I think I would love 
it. I haven’t considered the cost and complexity of  that system. 
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Figure 5 – A Second Path Through the Architecture 

 

The architecture in the pantry example shows many possible ways I could build a food 
storage system. As I think of  more possible items for each section, the number of  system designs 
grows. This is one thing an architecture does, it shows the disadvantages of  the possible. I can see all 
the crazy designs for a system. All those designs will satisfy the requirements, but all those designs 
are not wise. The architecture helps me see these poor choices and avoid them. The time I spend 
sketching and disregarding designs is minuscule compared to the time I would spend building, 
dismantling, and rebuilding food storage systems. 

A key phrase in the previous paragraph is “I can see.” An architecture helps us see what we 
can do. Seeing the possibilities helps people to disagree, and disagreement is a good thing when 
designing a system. If  everyone quickly agrees on a design, we haven’t designed yet. We haven’t 
examined the different paths through the architecture, discussed the good and bad attributes of  each 
path, and debated our preferences.  

For example, a vending machine Output would be good for food storage, unless I keep eggs 
in it. Sliding raw eggs out onto the floor is quick, but dirty.  

“But you don’t store raw eggs in a pantry, they go in the refrigerator.”  

“But this is a food storage system, and eggs are food, so we cannot limit this system to a 
room-temperature pantry.”  

“But I assumed it was separate from the fridge.”  

“But I want cold storage in my system.” 
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This conversation surfaces assumptions held by different people; the architecture enables the 
conversation and allows us to learn. This is true for the customer as well as for the systems engineer. 
The customer – back when he confidently told us his requirements – may not have considered all 
these “buts.” The architecture spurred more thinking and learning. The systems engineer will 
probably need to revise the requirements and the architecture. 

Putting Numbers into the Architecture 
The architecture showed the outline of  a system and the many different designs for the 

system. How can the systems engineer choose one design? One method is using a Technical 
Performance Measure or TPM. 

A Technical Performance Measure is a number that assigns value to a design. Consider the 
system architecture back in Figure 2. We can assign a Technical Performance Measure to each 
section of  the outline according to the amount of  time for that section to perform its function.  

How long will we allow the Input section to place the food items into the pantry? Five 
minutes a week? Five hours a week?  

How long will we allow the Process section of  the architecture to arrange the food items in 
the pantry, five or ten minutes a week?  

How long will we permit the Output section of  the architecture to dispense a requested food 
item? Five seconds? Ten seconds? 

The Technical Performance Measures cause us to examine the desired performance of  the 
system that fits in the architecture. Is the time to operate the important measure for this system? 
How about the weight of  the system? How about the cost of  the system? How many people will the 
system serve? The systems engineer should examine these different aspects of  the system. 

The Technical Performance Measure comes from asking the customer, “Which of  your non-
functional requirements will determine your satisfaction with the system?” 

Recall that the non-functional requirement is of  the form, “The system shall be 
__________.” In this case (time), the non-functional requirement is, “The system shall be fast.” The 
non-functional requirement leads to the determining factor(s) in choosing a path through the 
architecture. 

Let’s use the time as an example TPM. The systems engineer estimates a time needed for 
each option in Figure 3. We can assign the amount of time required for each option. For example, 
the option “I put item into the process” requires one hour per week to perform its function. The 
option “Delivery man puts item into the process” requires two hours per week. The option 
“Conveyor belt” requires 15 minutes per week. We can assign times for all the options in both the 
Process and Output sections of  the architecture. 

We can build a spreadsheet that calculates the time required for each of  the 18 possible paths 
through the architecture (the 18 designs). The spreadsheet will show the design that optimizes the 
TPM of time. The systems engineer has used the architecture, the options in each part of  the 
architecture, and the Technical Performance Measure to design a system. He examined the entire 
system and applied some wisdom. 
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Systems in real life are rarely this simple. The systems engineer often has to consider more 
than one Technical Performance Measure. As discussed above, we can add three more Technical 
Performance Measures: the weight of  the system, the cost of  the system, and the number of  people 
per day the system will serve. The systems engineer can assign a value in these three areas of  
consideration to each of  the options in each section of  the architecture. The systems engineer then 
creates spreadsheets that calculate a Technical Performance Measure for each of  the 18 paths for 
each of  these three additional areas of  consideration. 

The systems engineer now may have a design that is best for all four areas of  consideration. 
Sometimes one design is best is all four areas, but that is rare. What usually happens is that two or 
three of  the designs are better in different Technical Performance Measures. Once again, 
conversations occur between the systems engineer and the other interested parties. These 
conversations decide which design is the best compromise among all the Technical Performance 
Measures. 

Another Example Architecture 
Let’s now consider a more complex system – a system for purchasing items for an office. 

Figure 6 shows the architecture for this system. There are four sections in this architecture: Request, 
Approve, Purchase, and Deliver. 

 

Figure 6 – An Architecture for Purchasing Items 
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Figure 7 shows the result of  placing options into each section of  the architecture of  Figure 6. 
There are 192 different paths through Figure 7, and each will satisfy the basic function required of  
the system.  

Let’s consider a Technical Performance Measure of  time required to obtain an item needed 
in the office. The systems engineer estimates the time required of  each of  the options in each of  the 
sections. The systems engineer uses a spreadsheet to calculate the times required by each of  the 192 
paths through the architecture. Once again, the path through the architecture that uses the least time 
is that chosen as the design for the system. 

 

Figure 7 – Design Options for this Architecture 

 

This is all simple on paper, but far more complicated in real life. The tools described here, 
however, will serve the systems engineer well. 

The architecture shown in Figures 6 and 7 reveal another aspect of  Technical Performance 
Measures – the technical budget. For this example, the systems engineer can create a budget for the 
Technical Performance Measure. Consider setting a time requirement on the total system of  five 
days, i.e. a requested item must be delivered to the requester in five days or less. Five days is the total 
budget for this Technical Performance Measure. 

The systems engineer allocates a portion of  the total budget to each section in the 
architecture. Given there are five days in the budget, a simple method is to allocate each section 
equal time or 1.2 days. That may make sense, but it probably doesn’t. The Request section of  the 
architecture commences after the requesting person knows what he wants. The Request should only 
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take one hour, so the systems engineer allocates one hour of  the budget to Request. This leaves four 
days and seven hours of  budget to be allocated to the remaining three sections of  the architecture. 

After allocating the Technical Performance Measure budget, the systems engineer uses a 
spreadsheet to examine the 192 paths through the architecture. It is likely that a section exceeds its 
budgeted part of  the Technical Performance Measure. That could mean a failed system, but it is 
likely that another section doesn’t use all its budget. The systems engineer can take budgeted time 
from one section and give it to another. So long as the total system doesn’t exceed the total budget, 
the systems engineer is able to move allocations of  the budget among the sections of  the 
architecture. 

A basic Technical Performance Measure and budget allows the systems engineer to examine 
the entire system and apply some wisdom. 

Closing Thoughts 
The material in this chapter presents a straightforward process. The systems engineer: 

 Draws an architecture 

 Puts options in each section 

 Creates a Technical Performance Measure 

 Assigns values of  the Technical Performance Measure to each option in each section 

 Uses a spreadsheet to pick the best path through the architecture 

Real life working with real people on real systems is rarely so straightforward. Consider the 
Technical Performance Measure of  time for the system of  Figure 7. The shortest time to acquire and 
deliver a requested item is the best. In the Purchase section, it is obvious that using a “Runner,” a 
person who goes to the store to buy the item, is the most time consuming option. That could take a 
purchasing person hours to do while Purchasing over the Internet would only take minutes. 

But, is the important Technical Performance Measure the time required of  the purchasing 
person or the time required to put the item in the requesting person’s hands? If  a purchasing person 
went to the local store, the requesting person is likely to have the item in his hands today. Ordering 
over the Internet is quick for the purchasing person, but it will take several shipping days before the 
item arrives. Which is more desired? 

Also consider the time wasted when the ordered and shipped item is not what the requester 
wanted. It may be exactly what was requested, but not be what was wanted. People requesting things 
out of  catalogs are often disappointed. Suppose instead that the purchasing person goes to the local 
store, calls the requesting person on a cell phone, and uses the cell phone’s camera to show the 
requesting person what is in the store. 

The requesting person may say, “Oh! Look over to the left. That thing way over there, that is 
what I really want!” 

The systems engineer can now see that some paths through the architecture score poorly 
with the Technical Performance Measure. They seem to please the customer in some cases, but fail 
miserably in others.  



2010 © Dwayne Phillips - Page 40 

 

The course of  action is to offer flexibility in the architecture. Choose one path that will serve 
in 80% of the system’s usage. Have another path available for 10% of the usage, and another path 
for the final 10% of the usage. This is more complicated, but it is more likely to satisfy the customer. 

The architecture, the paths through the architecture, the Technical Performance Measure, 
and the spreadsheet are all tools. They are good tools, but they are merely tools. The systems 
engineer uses the tools and a lot of  wisdom to find a design. That design, however, may not satisfy 
the customer – the first job of  the systems engineer. The design can spur further conversation with 
the customer to help the customer better understand what he wants. 

The wise systems engineer will 

(1) use tools 

(2) have a conversation 

(3) repeat steps (1) and (2) until he and the customer are confident of  their 
understanding of  the system requirements. 

Suggested Exercises 
1. Look around the house. Find a system, draw its architecture as in Figure 2. Fill in some 

possible items as in Figure 3. 

2. Consider a food pantry. Draw an architecture that is different from Figure 2. 

3. Think of  an architecture type, i.e. an architecture that will work in several different situations. 
Draw that architecture type. Where could you use it? Think of  three usable situations.  

4. By hand, trace ten different paths through the architecture of  Figure 3. Which path do you 
like best? Why? Which path do you like least? Why? Which path would be expensive? Which 
path would be difficult to maintain? 

5. In exercise 4, expense and maintainability are two Technical Performance Measures. List 
three more Technical Performance Measures for the system. 

6. For the architectures of  Figures 6 and 7, use as a Technical Performance Measure the cost to 
build the system. Assume a total Technical Performance Measure budget of  $10,000. 
Allocate this $10,000 across the four sections of  the architecture. Defend your budget 
allocation. 

7. Starting with Figure 7, what conversations would you like to have with the customer to learn 
what would satisfy him? 

Reference: 
[Alexander] “The Timeless Way of  Building,” Christopher Alexander, Oxford University 

Press, 1979. 
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 Where We are Now 

 

The previous chapter showed how the systems engineer can use the architecture. The 
systems engineer draws the architecture outline, denotes the options for items in each section, runs 
the spreadsheet, chooses the path through the architecture, and there you have it – a designed 
system. 

I did leave out (at least) one step in all that – the dotted lines between the sections. These 
dotted lines are the interfaces, the things that allow the items in the different sections to connect to 
one another. Without the interfaces, those items are just interesting things sitting next to one 
another. 
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 4 Interfaces  

 

The “Goes Inta” and “Goes Outa” 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This guy has an obvious problem. The ends of  the two electric cords won't connect. He is 
using an even number of  cords instead of  an odd number – or it is the other way around? Either 
way, the system won't work. 

Interfaces match the goes inta's and the goes outa's. Interfaces – though tedious  – ensure 
the system connects.  

When using an architecture, the systems engineer placed many items into each section. 
Those items didn't just come from thin air. There must be some source of  requirements for each 
item. There is – and that source of  requirements is called an interface. 
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Once again, let's start with a definition (from http://dictionary.com). 

in·ter·face 

–noun 

1.  a surface regarded as the common boundary of  two bodies, spaces, or phases. 

2.  the facts, problems, considerations, theories, practices, etc., shared by two or more 
disciplines, procedures, or fields of  study: the interface between chemistry and physics. 

3.  a common boundary or interconnection between systems, equipment, concepts, or 
human beings. 

4.  communication or interaction: Interface between the parent company and its 
subsidiaries has never been better. 

5.  a thing or circumstance that enables separate and sometimes incompatible elements 
to coordinate effectively: The organization serves as an interface between the state government and 
the public. 

6.  Computers. 

a.  equipment or programs designed to communicate information from one system of  
computing devices or programs to another. 

b.  any arrangement for such communication. 

In our current context, I like definitions 3., 4., and 5. The interfaces used by the systems 
engineer (3.) provide a common boundary or separate the sections of  the architecture. The interfaces 
(4.) provide for communication between sections of  the architecture. Finally, the interfaces (5.) 
permit the sections of  the architecture to function as a complete system with a new function that 
differs from the functions provided by each section (the system is greater than the sum of  the 
sections). 

Once the systems engineer has an architecture for the system – the sections – he defines 
what is between those sections. These are the goes inta’s and the goes outa’s of  the sections. If  each 
item satisfies the interface of  a section, I can use the item. The item fits within the architecture. This 
gives me choice, and choice makes it much easier to satisfy the customer. 

Defining and maintaining the definition of  the interfaces in a system are two key tasks for 
the systems engineer. They are another part of  looking at the entire system and applying some 
wisdom. 

Example Interfaces 
Well-defined interfaces are commonplace. First consider the electrical outlets in your home 

and workplace. Figure 1 shows hand sketches of  common electrical plug and outlet interfaces. (The 
National Electrical Manufacturers Association or NEMA created and maintains these interfaces.) 
These interface the electric utility system to electrical appliances. The top row of  Figure 1 shows the 
125-Volt interfaces found in the U.S. while the bottom row shows the 250-Volt interfaces. 
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Figure 1 – Standard Electrical Interfaces 

 

These standard electrical interfaces provide safety. Look at the 125-Volt, 15-Amp interface 
shown in the upper left of  Figure 1. This is the most common plug-outlet interface in America. Now 
look at the two 125-Volt, 20-Amp interfaces in the top row of  Figure 1. They use one vertical and 
one horizontal slot while the 15-Amp interface uses two vertical slots. If  I have an appliance that 
draws 20 Amps of  current, my appliance will have a plug adhering to the 20-Amp interface. I cannot 
insert the 20-Amp plug into a 15-Amp outlet. The physical interface will not allow that. If  I could 
insert an 20-Amp plug into a 15-Amp outlet, my appliance would draw more current than the wiring 
in the house could safely support, and I could have a fire. 

Now consider Figure 2. This shows one of  the standard interfaces for 250-Volt systems that 
have a “twist-lock” interface. You use this interface by inserting the plug into the outlet and then 
twisting it. The twist locks the plug into the outlet so that it will not come unplugged unless you 
reverse the twist and then retract it. The twist-lock interface is required for an electrical appliance, 
usually a large construction power tool, that would become dangerous if  its power were 
disconnected unexpectedly. The twist-lock interface provides extra safety for systems that need it. 
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Figure 2 – A 250-volt Twist-Lock Interface 

 

These electrical interfaces sometimes bring aggravation. Have you ever had a device with a 
three-prong plug and walked up to the outlet that only accepts two-prong plugs? This is what 
happens when I visit my in-laws. Their older home only has two-prong electric outlets (the old 
standard interface). My laptop computer uses a three-prong plug (the newer standard interface). I 
have to cheat and use a three-prong to two-prong adapter. That is safe for a laptop computer, but 
not so safe for a power tool or a hairdryer. 

Another common interface defines outdoor faucets found on homes and businesses. This 
interface is set by the National Pipe Thread Standard (NPTS). The interface defines the diameter of  
the pipe, the number of  threads per inch, and whether the threads are straight or tapered. The 
interface allows me to connect a garden hose to the faucet and a large number of  items to the garden 
hose. I can wash the car, fertilize the lawn, and play on a slip n’ slide because of  this standard 
interface. 
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Indoor water connections use a different interface than outdoor ones. The indoor 
connections have more threads per inch. That provides a more water-tight seal and prevents leakage. 
The indoor interface costs more money, but that expense is justified by preventing water damage 
indoors.  

Consider another attribute of  the outdoor faucet interface. What if  we were to send acid 
through the faucet instead of  water? That would warrant a change in the interface. 

In addition to technical, electrical, and mechanical interfaces there are also social interfaces. I 
visit my doctor a few times a year to check my blood pressure and adjust my medicine. I don’t 
knock on the front door of  my doctor’s house when I think it is time for a check up. There is a 
defined interface between the two of  us. I call the office for an appointment, and a receptionist 
matches the doctor’s and my availability. When I arrive at the doctor’s office I enter a waiting room. 
I inform the receptionist that I am there are for an appointment. The receptionist sits in a separate 
room and speaks through a window joining the two rooms. I complete paperwork while waiting 
(and waiting and waiting) to see the doctor. 

When the appointment is concluded I encounter several more well-defined interfaces. There 
is the interface between the doctor and the accounting firm that the doctor employs. There is an 
interface between my health insurance provider and me. There is an interface between my doctor's 
accounting firm and my health insurance provider. The list of  interfaces goes on and on. 

Interfaces serve me in many ways. First, they reduce unnecessary thinking. Things just seem 
to fit together and work. Someone else like NEMA and NPTS did all the hard, detailed work for me 
years ago. 

The interfaces also help me to raise my level of  thinking. For example, when vacuuming my 
carpet I concentrate on cleaning the carpet. I don’t concern myself  with the windings on the electric 
motor in the vacuum cleaner, if  the motor is too small for the electric supply, if  the input voltage 
meets the requirements of  the motor, and if  and if  and if.  

Levels of  the Interface 
The systems engineer will describe the interfaces between sections in an architecture. This 

can be a daunting task.  

One way to make it easier is to apply some structure to the interface. For example, in 1977, 
the International Organization for Standardization (ISO), began to develop its Open Systems 
Interconnection (OSI) networking suite. They created a seven-layer model for describing 
communication interfaces among electronic systems. That model aids systems engineers in creating 
interfaces among those types of  systems. 

The OSI seven-layer model is a good one, but too complex for the current discussion. 
Instead, I propose a three-layer model: 

3. semantic 

2. descriptive 

1. physical 
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The physical layer of  the interface defines the physical pieces that I can hold in my hand. In 
the examples given above, Figures 1 and 2 showed the physical devices used in the electrical 
interfaces in my home. The water faucet with a defined diameter and threads is another physical 
interface. 

The descriptive layer describes the material that passes through the physical layer of  the 
interface. In the home electrical system, the material is electricity. I use 125 Volts and 15 Amps in 
the vast majority of  my interactions with the electric system. “125 Volts” and “15 Amps” are the 
contents of  the descriptive layer. In the water faucet example, the descriptive layer tells me that I am 
moving water (not acid) at a certain rate of  gallons per second and at a pressure of  so many pounds 
per square inch. 

The semantic layer pertains to the messages that we may be passing through the interface 
and how we interpret those messages. The semantic layer doesn’t apply to the electricity and water 
faucet examples. That is the nature of  models – often the model doesn’t apply to a particular 
situation. Use what makes sense and don’t use what doesn’t make sense. 

The semantic layer does apply to the social interface with the doctor’s office. When I talk 
with the receptionist we talk about appointments. We don’t discuss religion or politics. In a similar 
vein, the interface between my health insurer and the doctor’s office passes messages about types of  
treatment, costs, and compensation. 

Defining an Interface 
As a systems engineer, I often encounter situations where there is no standard interface 

defined for the systems I am building. I have to define the interface myself.  

The usual means for defining an interface is via an Interface Control Document or ICD. The 
ICD was always a paper document with predefined sections (yes, an interface standard for an 
interface control document). In recent years, systems engineers have used web pages and even 
videos to describe interfaces. 

One way to lessen the work involved in defining an interface is to use part of  an existing 
interface. This is especially true for the physical layer of  the interface. If  I can use the NEMA-
defined interface for an electrical outlet or the defined interface for an outdoor faucet, I will save 
lots of  time and money. 

Sometimes, I cannot use any existing interfaces and I have to create an entirely new one. I 
try to work with the levels of  the interface discussed earlier:  

3. semantic 

2. descriptive 

1. physical 

Let’s discuss an interface between a soccer coach for a kid’s soccer league and the parents of  
the players. This is an example of  a social interface. Trust me I have experience here, this interface 
should be defined as it will make life and the soccer season much easier. 
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Physical Layer: The coach and parents will communicate via e-mail. They will also use cell 
phones for emergencies only. Another part of  the physical level of  the interface is that at the 
beginning of  the season the coach will give each parent a piece of  paper.  

The final part of  the physical level is when communication will occur. The interface defines 
the hours of  the day and days of  the week that the coach and parents will check their e-mail. It also 
includes the times that emergency phone calls are accepted. 

Descriptive Layer: This doesn’t seem to apply well to this interface, so let’s skip it.  

Semantic Layer: This level of  the interface defines the topics that are to be communicated 
via e-mail, emergency phone calls, and the piece of  paper. The paper provides the schedule for 
games, practices, and parties for the entire season. This is the baseline schedule. Everyone should 
expect changes due to weather and other circumstances, and those changes will be communicated 
via e-mail. There are some topics that are permitted in one-to-many e-mails, i.e. those e-mails sent to 
the entire group. Some topics are permitted only in one-on-one e-mails between the coach and one 
parent. I find that it worked well for people to understand what information was “public” (John is 
out of  town this weekend and will miss the game) and what was “private” (John’s mother and I are 
in divorce proceedings so you won’t see us together at the games any more). 

The Semantic Layer in this example also describes what constitutes an emergency – cell 
phone call instead of  e-mail. In my experience, this greatly reduces the time on the phone. 

Another Couple of  Interfaces 
The example interface above was fairly simple. Let’s delve into systems that are more 

complicated – systems with several sections like in the previous chapter on architecture.  

Figures 3 and 4 show two such systems. They are both systems to water plants. Hence, they 
have the same architecture with four sections: Source, Transport, Dispenser, and Destination. A 
glance at the items in each section shows that we are considering two very different systems and 
situations. Figure 3 concerns a person with three houseplants to water. Figure 4 is where we have 
10,000 acres of  tomatoes to water. Since the systems are different, the interfaces will be different. 

The following pages discuss these interfaces in detail. This is tedious. The reader may opt to 
skim this material. Interfaces, though a great help to me as a systems engineer, are often boring to 
discuss. 

Notice in the two figures how I have labeled the dotted lines – the interfaces – with “ICD 0” 
through “ICD 3.” This is a systems engineering convention that provides a convenient shorthand. 
Systems engineers commonly speak in terms of  ICD-number. 

First consider the architecture in Figure 3. 

ICD 0: This interface describes how water enters the system. It separates the source of  water 
(mother nature) from the public drinking water system. 

Physical Layer: Let’s assume that this particular public drinking water system obtains its 
water from a river. The physical interface is the river. 
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Descriptive Layer: The river provides a million gallons of  water a day that is not potable. The 
public drinking water system – the first part of  the system in Figure 3 – will transform the river 
water into potable water. 

 

 

Figure 3 – A System to Water Three House Plants 

 

Semantic Layer: This doesn’t make much sense here, so let’s not worry about it. 

ICD 1: This interface separates the public drinking water system from the one-quart water 
pitcher. The water pitcher is easy to put in the sink under the faucet and fill with water. 

Physical Layer: The kitchen faucet is the physical interface between the water system and the 
pitcher. This is pretty simple, but there could be other physical interfaces we could use like the 
outdoor faucet or even the main water line that enters the home. 

Descriptive Layer: The kitchen faucet can deliver one gallon of  water a minute. The water is 
clean and potable. 

Semantic Layer: This doesn’t make much sense here, so let’s not worry about it. 

ICD 2: This interface separates the one-quart water pitcher from the squirt bottle. A quart 
pitcher of  water is too heavy to carry from the sink to the plants. Plus, it is difficult to pour a little 
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water out of  the pitcher into the small pot holding the plant. A squirt bottle is much easier to use. 
How can we move the water from the pitcher to the squirt bottle? The physical layer describes that. 

Physical Layer: I will use a small funnel that fits into the top of  the squirt bottle. This allows 
me to pour water from the pitcher into the bottle. 

Descriptive Layer: The funnel is large enough to move one quart of  water every two 
minutes. The water is clean and potable. 

Semantic Layer: This doesn’t make much sense here, so let’s not worry about it. 

ICD 3: This interface separates the squirt bottle from the three houseplants. I will simply 
squirt the water through the air onto the plants. 

Physical Layer: The interface here is just the open air. This level doesn’t make much sense, 
so let’s not worry about it. 

Descriptive Layer: This too doesn’t make much sense here, so let’s not worry about it. 

Semantic Layer: Once again, this doesn’t make much sense here, so let’s not worry about it. 
The ICD 3 sentences above are sufficient for this interface. 

Now consider the architecture in Figure 4. 

 

Figure 4 – A System to Water 10,000 Acres of  Plants 
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ICD 0: This interfaces separates the source of  water for the Colorado River from the river 
itself. The river is fed by streams and mountain run-off. 

Physical Layer: The physical interface is miles of  streams and mountains. 

Descriptive Layer: The water feeds in at a rate ranging from a trickle to a million gallons a 
day. The water is fairly clean in its pristine, natural state. 

Semantic Layer: This doesn’t make much sense here, so let’s not worry about it. 

ICD 1: Large farms, like the one we are watering in this system, use miles of  irrigation canals 
to move water. This interface separates the Colorado River from these canals. 

Physical Layer: The interface between the river and the canals comprises dozens of  large 
sluice gates. 

Descriptive Layer: These sluice gates have a combined capacity of  100,000 gallons of  water a 
day. 

Semantic Layer: The material moving through the interface is water, and there isn’t much of  
a semantic interface with water. These gates, however, are not merely “open” or “closed.” They 
operate on a computer-controlled system that regulates the amount of  water from the river going to 
the fields. A semi-automated system monitors the amount of  moisture in the fields, the weather 
forecasts, and the rules of  thumb that the farm manager has gathered from years of  experience. The 
controlling computers pass electrical signals to the sluice gates to pass variable amounts of  water 
from the river to the irrigation canals. This is a complex and expensive interface. 

ICD 2: This interface separates the large irrigation canals from the smaller ditches in the 
fields. 

Physical Layer: The interface between the canals and the ditches is similar to interface 
between the river and the canals. In this case the sluice gates (hundreds of  them) are smaller and 
simpler. 

Descriptive Layer: These smaller sluice gates have a combined capacity of  1,000 gallons of  
water a day. 

Semantic Layer: The semantics of  the smaller sluice gates are simpler than the large sluice 
gates. These gates are opened variable amounts by farm workers under the guidance of  the farm 
manager. The messages passed between the manager and workers seem simple (”a little more, that’s 
it”), but like most words passed between people, they can be confusing. 

ICD 3: This final interface is between the water-carrying ditches and the 10,000 acres of  
plants. 

Physical Layer: This interface comprises the individual rows of  tomatoes. This seems 
obvious, so let’s not worry too much about it. 

Descriptive Layer: The rows have a capacity of  100 gallons of  water a day. 

Semantic Layer: This doesn’t make much sense here, so let’s not worry about it. 
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Architecture and Interface: A So-So Episode 
I illustrate the value of  using both architecture and interfaces with an episode I experienced 

at work. A group of  engineers had built a set of  devices whose function resembled that shown in 
Figure 5. The devices had Sensors known as “Switched” Sensors because they could be turned on 
and off.  

 

Figure 5 – A Typical Device 

 

This set of  devices used a number of  different digital sensors including: 

 still camera 

 video camera 

 fluid level 

 thermometer 

 pressure gauge 

The output of  the Sensor was sent through a pair of  Radio Transceivers (devices with a 
transmitter and receiver) to a Computer that displayed the sensed information to an Analyst – a 
person. The Transceivers could send information back from the Analyst to the Switched Sensor. 
This allowed switching the Sensor on and off. 

What differentiated these devices was the Sensor (camera or thermometer) and the data rate 
needed for the Radio Transceivers. Consider using a digital camera that takes a one-megabyte image 
once a day. This permits 24 hours to send the megabyte of  data from the Sensor across to the 
Computer and Analyst – a data rate of  about 12 bytes per second. That is a pretty slow data rate, one 
that may also work for a thermometer, pressure gauge, and fluid level. If, however, the camera took 
one picture every second, the data rate would be 1,000,000 bytes per second. If  the Sensor were a 
video camera operating at 30 frames per second, the data rate would be 30,000,000 bytes per second. 
So, with these few examples, the data rate could range from 12 bytes per second to 30 million bytes 
per second – quite a difference. 

The engineers in this episode had a successful set of  devices because the customers used 
every device built and were satisfied. The engineers failed in this episode because they lacked both 
an architecture and defined interfaces. The problems that ensued are described later. 

After a few hours of  discussions between several systems engineers and the engineers in the 
episode, we drew the architecture with interfaces shown in Figure 6. 
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Figure 6 – An Architecture with Interfaces Corresponding to Figure 5 

 

The architecture in Figure 6 first separates the Sensor section from the Communication 
section. Back in Figure 5, the engineers built each Sensor and Radio Transceiver as one part. 
Separating the Sensor and the Communication allows swapping a type of  Communication to fit the 
data rate needed.  

Replacing the Radio Transceivers with a Communication section allows many more options. 
The first option is that there are several types of  communication links that work via methods other 
than radio. The simplest concept is using wires instead of  radio to connect the two transceivers. 
Wires have advantages in different situations. The other options involve the data rate. 
Communication devices with lower data rates can be made smaller and use less power than devices 
with higher data rates.  

Given the above, it is simple to have three different data rates (100, 1,000,000, and 
50,000,000 bytes per second) and two different means of  connection – radio and wired. This gives 
six different types of  Communication items. 

A third change between Figures 5 and 6 is creating a separate Control section that can switch 
the Sensor on and off. The Control section has defined interfaces with both the Communication 
and Sensor sections. These changes permit using more complex control mechanisms. In addition to 
on and off, the Control section could vary the number, timing, and amount of  data sensed as well as 
other attributes. 

Any item that fits in a section, i.e. it meets the requirements of  the section and the interfaces, 
can be used in the section. This allows a family of  items. The example of  Figure 6 can have a family 
of  Sensors, a family of  Communication items, and a family of  Control items. Defined interfaces 
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permit mixing and matching items in the architecture depending on the situation. This brings 
advantages such as: 

 reusable items 

 simpler items 

 easier maintenance 

 greater flexibility 

 reduced logistics expenses 

 systems that better match the customers' situations 

These advantages were all absent when the engineers were building devices such as shown in 
Figure 5. Those devices had disadvantages such as: 

 limited use 

 greater complexity 

 difficult maintenance 

 longer time required to deliver 

 higher cost 

Let's expand on the expense as an example. The engineers estimated the number of  each 
type of  device the customer needed. The problem was that the estimate was too high for some types 
and too low for others. The items they under estimated required ordering a second time. This lost 
the cost savings available in single, large orders. The items they over estimated sat on the shelf  
unused. The unused items had the effect of  raising the cost per item of  those used. 

Using an architecture and interfaces, the engineers would have ordered families of  items. 
These families could be assembled into systems as desired by the customers. The flexibility would 
have meant greater efficiency in the use of  the parts with a cost savings. 

I titled this section a “So-So Episode” because of  the result. The engineers didn't adopt the 
architecture and interface methods recommended by the systems engineers. They just didn't want to 
change the way they built devices. The organization had an excess of  funds that year, so their 
managers weren't excited about cost savings. The customer just wanted something that worked and 
wasn't interested in the mumbo jumbo engineering philosophy chat. 

I do claim some success in this episode. This was the first time that several of  the younger 
engineers had heard of  these systems engineering concepts. They did see the value of  architecture 
and interfaces. The episode met the minimum criteria for introducing a new concept: they were 
more interested in systems engineering than before. 

Closing Thoughts 
The subject of  interfaces and ICDs can be tedious. I hope you have been able to read 

through this chapter. I've presented a mechanical process that isn't exciting: 

 Label each interface ICD 0 through ICD n on the architecture drawing 
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 Outline a piece of  paper with the ICDs and the three layers in each ICD 

 Write the ICD details on that piece of  paper 

Interfaces, like architecture in the previous chapter, provide for a conversation between the 
systems engineer and the customer. This conversation is their greatest value. Please understand that 
the customer isn't interested in ICDs – he is only interested in a satisfying system. The ICDs, 
however, can help the customer think about what will be satisfying. Take care in how you, the 
systems engineer, present the ICDs to the customer for a conversation.  

Please notice all the people in the systems and interfaces examples of  this chapter. The 
principles of  systems engineering apply to computers, machines, and tools, but they also apply to 
groups of  people. Take great care with this thought. People aren’t cogs in machines, and don’t think 
of  them as such. 

Suggested Exercises 
1. While drafting this chapter, I looked around my home for examples of  interfaces. Some 

examples included: 

 TV remote control 

 Light bulbs (the screw threads work, they even work with those new fluorescent 
lights). 

 Doorknob and lock mechanism fits into the door and doorframe. 

 Plates in a kitchen cabinet. The plates seem to be a standard size as do the cabinets, 
and they interface properly. 

Define the physical, descriptive, and semantic layers of  these interfaces. 

2. I'm in a library while editing this chapter, and there are over-sized books, i.e. books that 
don't fit in the standard-size bookcases. Which part of  the book-to-book-case interface control 
document has been violated? Look around where you are right now and find something like over-
sized books that doesn't fit. For what you have found, what part of  the interface control document 
has been violated? 

3. Consider the system in Figure 3. As the systems engineer, how would you present the 
ICDs to the customer to enable a conversation? What would be the advantages and disadvantages 
of: 

 Giving the paper ICDs to the customer 

 Reading the ICDs to the customer 

 Demonstrating the ICDs to the customer  

 Some other method not listed above 
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 Where We are Now 

 

At this point, the systems engineer has built the system on paper – so the systems engineer is 
done, right? Well, let's do one more fundamental technique – tracing. 

Tracing allows the systems engineer to step through the system on paper: requirements then 
architecture then interfaces. Errors are easier to see, changes are easier to accommodate, and tests 
are easier to perform because of  tracing. 

Tracing makes the systems engineer much wiser when trying to examine the entire system. 
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 5 Tracing 

 

Making systems engineering a little easier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I loved to draw as a kid. Sometimes I would trace a picture instead of  drawing it freehand. 
Tracing made some really hard drawings much easier. Place a piece of  that special paper on top of  
the picture and slowly trace. Something so simple was such a big help. 

The systems engineer can also use tracing. The tracing helps the system engineer examine 
the entire system and apply a little wisdom. 

  

Classic Tracing 
This section will illustrate the classic method of  tracing. The concept is simple: draw a sketch 

that allows the systems engineer to trace a line from one artifact to the next. 
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Figure 1 shows the basic structure of  a tracing diagram. In the upper left are the system’s 
requirements. The system’s requirements flow down and right to the architecture level of  the system. 
Here the requirements are allocated to each section of  an architecture and the interfaces between the 
architecture sections. These flow to the item(s) in the section. Flowing down further are how these 
requirements are fulfilled in the detailed design of  an item. Finally, while building or buying the item, 
the requirements are met in the physical item. 

 

 

Figure 1 – A Basic Tracing Diagram 

 

Figure 2 shows an architecture copied from the Interfaces chapter. This architecture has four 
sections: Source, Transport, Dispenser, and Destination. Each section is present because it has a 
part in satisfying the customer’s requirements. The Interfaces between these sections (represented by 
ICD 0 through ICD 3) also fulfill part of  the customer’s requirements.  
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Figure 2 – An Architecture Diagram from the Interfaces Chapter 

 

Figure 3 shows an example of  flow-down and tracing. This is an overwhelming figure at first 
glance. Let's walk through it piece by piece and limit the discussion to four simple requirements of  a 
system to water house plants. These requirements are: 

 R1: Water three potted plants. 

 R2: Water once a week. 

 R3: Plants are daisies, tomatoes, and radishes. 

 R4: The customer carries several items while watering the plants. 
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Figure 3 – A Tracing Diagram Including the Requirements in Each Level 

 

Let’s limit the discussion to the Dispenser section and how Requirements R1, R2, R3, and 
R4 affect the Dispenser section. Conversations with the customer reveal several requirements for 
the Dispenser section of  Figure 3. These are elaborations of  requirements R1, R2, R3, and R4. These 
elaborations or “flowed-down” requirements are: 

 Dispenser R1: The dispenser must fit in an apron pocket. 
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 Dispenser R2: The dispenser must hold 12 ounces of water. 

 Dispenser R3: The dispenser must be operated with only one hand. 

The “Dispenser R1” requirement flows down from requirement R4. The customer cannot 
be carrying the dispenser while carrying other items. Hence, the dispenser must fit in an apron 
pocket.  

The “Dispenser R2” requirement flows down from requirements R1, R2, and R3. Watering 
these three plants once a week requires 12 ounces of water. (My apologies to readers who know a lot 
more about watering house plants than me. I am using arbitrary numbers in this example.) 

The “Dispenser R3” requirement also flows down from requirement R4 as two-hand 
operation won’t work for the customer, e.g. the customer may be speaking on the phone while 
watering plants.  

Now the systems engineer flows down the three Section-level requirements to the Detailed 
Design level of  Figure 3. The systems engineer elaborates the requirements in terms that make sense 
for this level. Part of  the requirements become: 

 Detailed Design R1: The dispenser bottle will have a 3-inch diameter. 

 Detailed Design R2: The dispenser bottle will be 4 inches tall. 

 Detailed Design R3: The dispenser bottle will use a squeeze top that sprays a mist of  water. 

The “Detailed Design R1” requirement flows from the “Dispenser R1” requirement. A 3-
inch-diameter bottle will fit in an apron pocket.  

The “Detailed Design R1” and “Detailed Design R2” requirements combine to meet the 
“Dispenser R2” requirement as a 28-cubic-inch bottle will hold 15 ounces of  water. That is more 
than enough. 

The “Detailed Design R3” requirement flows down from the “Dispenser R3” requirement 
as it allows for one-handed operation. 

At the Build level of  Figure 3, the systems engineer decides to go to the store and buy such a 
squirting bottle. The size and mechanism required by the Detailed Design level are easily met at a 
hardware store.  

Notice the principles from Figure 3. 

(1) Each thing in the figure flows from some other thing. Most of  the things flow down 
from something above them in the figure. The System Requirements in the upper left corner flow 
from the systems engineer’s conversations with the customer. 

(2) Each thing in the figure flows to something more detailed (except for the thing in 
the lower right which is the actual item in the system). 

Also notice that Figure 3 does not show everything related to the system. It only shows how 
three requirements flow down to one section of  the architecture, and how those flow to the actual 
water dispenser. The entire tracing diagram for this simple system – water three houseplants – would 
cover a wall. While the tracing diagram provides a good visual display of  flow-down, it quickly 



2010 © Dwayne Phillips - Page 62 

 

becomes unusable. In practice, I recommend other tools (see later) to keep track of  the flows and 
enable tracing. 

Examining a wall-sized diagram would be overwhelming. That is a characteristic of  tracing in 
systems engineering: it quickly becomes just too much work. Nevertheless, I believe it is worth the 
effort as the following sections illustrate. 

Tracing and Changes 
A fundamental concept in an engineered system is that everything is connected. Hence, a 

change in one place in a system leads to changes in other places. Ensuring that all the changes 
throughout the system are correct is a basic and daunting challenge facing the systems engineer.  

Tracing permits changes to the system. The systems engineer works with customers who 
learn. The learning customer wants changes to the system while the system is being built. Hence, 
change is inevitable and the systems engineer is best served with a method that accommodates 
change. Let’s walk through some change scenarios. 

A Change Scenario 

First, consider a change in requirement R1 from watering three potted plants to watering six 
potted plants. The basic requirements shown earlier become: 

 R1(new): Water six potted plants 

 R2: Water once a week 

 R3: Plants are daisies, tomatoes, and radishes 

 R4: The customer carries several items while watering the plants. 

Combining R1 (new) with R2, and R3, the systems engineer can trace these down to the 
Section level of  Figure 3, i.e. “Dispenser R2: The dispenser must hold 12 ounces of  water.” The 
Dispenser requirements become: 

 Dispenser R1: The dispenser must fit in an apron pocket.  

 Dispenser R2 (new): The dispenser must hold 24 ounces of  water. 

 Dispenser R3: The dispenser must be operated with only one hand. 

The systems engineer continues to trace down through Figure 3 to the Detailed Design level. 
The dispenser still must fit in an apron pocket, so it still must be no larger than 3” in diameter. To 
double the water-carrying capacity, the dispenser now will be 8” tall instead of  4” tall. The 
requirements at the Detailed Design level become: 

 Detailed Design R1: The dispenser bottle will have a 3-inch diameter. 

 Detailed Design R2 (new): The dispenser bottle will be 8 inches tall. 

 Detailed Design R3: The dispenser bottle will use a squeeze top that sprays a mist of  water. 

Now the systems engineer and the customer need to talk about the implications of  changing 
from three to six potted plants. Can the customer carry a bottle that is 8” tall and holds 24 ounces of  
water in an apron pocket? Can the customer use this larger bottle with one hand? If  the answers are 
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“yes,” the systems engineer is done. Simply alter the figure with the changed requirements and go to 
the store and buy a bigger bottle. If  the answers to the questions are “no,” the systems engineer and 
customer have more work to do. 

Tracing enables this essential conversation between the systems engineer and the customer. 
The trace through the diagram shows the systems engineer what will have to change to satisfy the 
customer’s new desires. The trace through the diagram enables the systems engineer to examine the 
entire system and apply a little wisdom. 

Another Change Scenario 

A second example: the customer tells the systems engineer that he has a new apron which 
has a bigger pocket than the old apron. This change takes the systems engineer to the Section level 
of  Figure 3. The requirements here are: 

 Dispenser R1: The dispenser must fit in an apron pocket. 

 Dispenser R2: The dispenser must hold 12 ounces of water. 

 Dispenser R3: The dispenser must be operated with only one hand. 

The next level down – the “Detailed Design” level – has the requirements that flow down 
from these. The requirement “Dispenser R1” traces down to requirement “Detailed Design R1.” 

 Detailed Design R1: The dispenser bottle will have a 3-inch diameter. 

 Detailed Design R2: The dispenser bottle will be 4 inches tall. 

 Detailed Design R3: The dispenser bottle will use a squeeze top that sprays a mist of  water. 

Since the apron pocket will be larger than before, the 3-inch diameter dispenser will still fit 
in it. The systems engineer will not have to make any changes to Figure 3. That is good news 
because the customer's new apron doesn't require changes to the system. Again, the figure enables 
the systems engineer to examine the entire system and apply some wisdom. 

Yet Another Change Scenario 

Now consider a different change to the apron pocket. In this change the size of  the pocket 
decreases. The systems engineer traces through the diagram just as in the second example and can 
see that a 3-inch diameter bottle is in the detailed design.  

The systems engineer and customer need to determine if  the 3-inch diameter dispenser will 
fit in the new, smaller pocket. If  it does, the systems engineer and customer are finished as no 
changes are needed. If  it doesn’t, the systems engineer and customer have more work to do. They 
have to determine what diameter dispenser will fit in the new pocket. How will a smaller diameter 
affect the height of  the dispenser? Will a taller dispenser satisfy the customer? What else might the 
systems engineer and customer have to do? 

Again, Figure 3 and tracing enable the systems engineer to see how a change in something 
like the size of  an apron pocket affects the rest of  the system. The systems engineer can see the 
entire system and apply wisdom. 
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One Final Change Scenario 

Consider a fourth change: The 3” diameter and 4” tall dispenser is not available at the store. 
The systems engineer cannot simply buy the dispenser as designed. The systems engineer has to 
determine what size dispensers are available at the store. 

One that has 2” diameter and is 9” tall would have the required 28 cubic inches of  capacity. 
That model, however, is not available. 

The systems engineer can find a dispenser that has a 2” diameter and is 5” tall. That has 16 
cubic inches of  capacity but fails to meet the 28 cubic inches required by: 

 Detailed Design R1: The dispenser bottle will have a 3-inch diameter. 

 Detailed Design R2: The dispenser bottle will be 4 inches tall. 

The systems engineer needs to talk with the customer. The customer never required that all 
watering be made in one trip. Would the customer be satisfied with having to refill the dispenser 
after watering two of  the three plants? 

If  the answer is “yes,” the systems engineer is almost finished. Simply change Detailed 
Design R1 and R2 to meet the actual dispenser that is available at the store. 

If  the answer is “no,” the systems engineer and customer have more work to do. Maybe they 
can find the desired size dispenser at another supplier. Maybe they can modify a larger dispenser by 
cutting it to size. Maybe they have to build their own dispenser.  

These necessary discussions only occur because the systems engineer can see the affect of  
changes that the customer requests. Tracing through Figure 3 allows the systems engineer to see the 
entire system and apply some wisdom. 

Tracing and Testing 
Testing is an important aspect of  systems engineering. The systems engineer’s goal is to 

satisfy the customer. Testing validates that the system works to our understanding of  the customer's 
requirements. 

Several questions the systems engineer asks about testing include: 

 “What do we test?” 

 “How do we test?” 

Tracing and drawings like Figure 3 help the systems engineer ensure that the right things are 
tested in the right manner. 

Figure 4 shows the relation between tracing and testing. The left half  of Figure 4 is what was 
shown in Figure 1. The right half  adds testing. There is a set of  tests that correspond to each level in 
the tracing diagram. 
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Figure 4 – Adding Testing to the Tracing Diagram of Figure 1 

 

For each of  the five levels in Figure 4, the systems engineer asks, “Why do we perform this 
test?” 

The answer is, “To ensure that this thing is what it is supposed to be.” 

The example in Figure 5 helps illustrate this concept. The left half  in Figure 5 is Figure 3. 
The right half  of  Figure 5 adds the five corresponding test levels. 

Let’s trace through the levels of  testing of  Figure 5. At the bottom level, the testing validates 
that a squirt bottle is present. This isn’t much of  a “test,” but it ensures that we have something that 
we can test at the higher levels. Don’t skip this “we have something” test. I have personal (tragic) 
experience with builders starting extensive and expensive tests without anything in their hands to 
test. 
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Figure 5 – Adding Testing to the Tracing Diagram of Figure 4 

 

Next up in Figure 5 is the test corresponding to the Detailed Design level. At this point, the 
testers measure the size of  the dispenser to ensure that it is 3 inches in diameter and 4 inches tall. 
The testers also ensure that the dispenser has a squeeze handle that can be operated with only one 
hand. 

Continuing up in Figure 5 is the test corresponding to the Section or Dispenser level. The 
testers try to put the dispenser in the customer’s apron pocket. They also try to pour 12 ounces of  
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water into the dispenser. Finally, they ensure that a person like the customer can hold the dispenser 
in one hand. 

The process continues up to the level of  Figure 5 corresponding to the Architecture. The 
testers verify that the needed squirt bottle fits in the Dispenser section of  the architecture and that it 
fits with the ICDs there. 

Testing finally moves up to the System level. Here the testers (after running the tests by 
themselves) ask the customer to test the item in the Dispenser section of  the architecture, i.e. the 
squirt bottle. The testers give the customer the squirt bottle containing water and stand back. They 
observe the customer watering his three houseplants while wearing his apron, carrying other items, 
and using one hand to water the plants. 

If  at the end of  testing, the customer is not satisfied and wants more, tracing helps the 
systems engineer scan through the diagram and locate where changes are needed. The systems 
engineer can then work through the changes using steps like the change scenarios given earlier. 

The interplay between tracing and testing may seem obvious. Of course the squirt bottle will 
work. What could be simpler? This is a simple concept. It falls back to the common sense argument. 
It is common sense that you would test to validate that the final system does what is supposed to do. 
Also recall that common sense does not always lead to common practice. I have seen many systems 
“finished” that do not satisfy even the most basic requirements and desires of  the customer.  

Use the relationship between tracing and testing. Don't assume that it is too obvious and 
simple. 

Tools for Tracing 
The two figures that illustrate tracing and testing (Figures 3 and 5) are messy, complicated, 

and hard to follow. All that and they only show the tracing for one part of  a simple system. While 
they illustrate tracing and how tracing helps the systems engineer, they are impractical in many 
situations. 

There are other tools the systems engineer can use to trace through a system. The first 
employs the same figures on a larger scale. Use a computer and a plotter to draw a large figure – one 
that is four feet wide by eight feet tall (taller if  your ceilings are taller). Such a large figure would 
permit putting the trace of  an entire, complex system in a picture that is readable and usable. 

Another form of  a large picture is to use a wall, cards, and string. Write the words shown in 
the figures on 3x5 or 5x7 cards. Tack or tape the cards to the wall in the cascading form of  Figure 3. 
Don’t draw lines on the walls! Instead, make lines that connect the cards and words with string or 
yarn. This requires lots of  space on large, blank walls, but provides a picture of  the system trace in a 
usable format. 

A table or a matrix of  text provides all the tracing information of  the figures without 
drawing. There are several methods employing this basic idea, and they all are much easier when 
used on a computer. The simplest is to use a word processor program, create a large table, and enter 
the System Requirements in the first column, the Architecture sections in the next column, and so 
on. This is a little easier if  the page is turned sideways (landscape instead of  portrait format).  
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The systems engineer can make this even easier by using a spreadsheet program. Use the 
spreadsheet’s built-in rows and columns to ease some of  the mechanics of  the table. Various 
spreadsheet programs also provide the ability to link a cell to another cell far away in the table. That 
makes jumping from place to place while tracing easier. 

There are software products available that perform the requirements management and 
tracing described in this chapter. A leading product is DOORS from Telelogic (see 
http://telelogic.com). I have worked on several projects that used DOORS. It works quite well. It 
is, however, more costly than a word processor or spreadsheet and, because of  its many capabilities, 
it requires substantial time to learn how to use. There are other commercial software products that 
perform the same functions as DOORS. An Internet search on “requirements management 
software” points to them. 

Also in the class of  software products for tracing is the Open Source Requirements 
Management Tool or OSRMT. This is an open-source software product (see http://sourceforge.net and 
http://osrmt.com) that comes free of  charge. I haven’t used it personally, but it is rated highly on 
the Internet, and since it is open-source, you can download and test it without charge. 

The different tools described above share a common characteristic: they allow the systems 
engineer to look at a requirement or design description anywhere in a system and trace backwards 
and forwards. Each thing in the system has a parent(s) or child(ren).  

A big drawing works well for me personally as I like to literally see the traces up and down. 
Tables of  text of  varying specialization also work as long as there is a place in the table indicating 
where to go up and down in the trace. 

A specific type of  tracing table is known as the Requirements Verification Test Matrix or 
RVTM. Figure 6 shows the RVTM of the example of Figures 3 and 5. A key part of  the RVTM is 
the column to the far right. This column points to the tests where the various items are validated. It 
corresponds to the tests that climb up the right side of  Figure 5. 

The RVTM is a powerful tool for the systems engineer. A blank cell in the RVTM indicates 
that the tracing is broken, i.e. something doesn’t have a parent or child – something in the system 
doesn’t belong in the system. Building an RVTM is difficult. Tracing through a system without an 
RVTM is really difficult. The software tools mentioned above are all appropriate for building an 
RVTM. 
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Figure 6 – An RVTM Corresponding to the Tracing Diagram in Figure 5 

Fit 
As mentioned several times in this book, I like the concept of  fit. I have always felt that what 

I am doing at work fits in some grand plan. I have been disappointed many times, but on a few 
joyous occasions I learned that my part did fit into something much bigger than myself  and what I 
could do alone. 

My fondness for fit is one of  the reasons that tracing and the figures in this chapter appeal to 
me so much as a systems engineer. When tracing, everything in the diagrams and tables has a place 
to fit in the actual system that satisfies the customer. Each thing comes from something and it leads 
to something. 

The tracing diagram or table is like a jigsaw puzzle representing what will become a system. 
A hole stands out like a missing jigsaw piece. The puzzle allows the systems engineer to examine the 
entire system. It can make the systems engineer seem so much wiser than he is. 
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Closing Thoughts 
At this point, some readers may be squirming in their chairs. The classic tracing described in 

this chapter is a super-organized method. It fulfills the cliché of  “a place for everything and 
everything in it place.” Some of  us love that cliché and strive to live by it. Some of  us hate it. 
Neatness and organization impose rigidity and smother our creativity. On top of  that, the tracing 
diagrams show the classic waterfall process of  building systems that bureaucracies force on creative 
people. And oh, the paperwork this creates! 

These criticisms are valid. Classic systems engineering, flow-down, tracing, and RVTMs are 
systematic and organized methods. They can become burdensome bureaucracies generating 
mountains of  useless paper. 

Tracing, however, is being used in agile, iterative, and evolutionary methods. In some of  
these methods, users write stories of  how they will use a system on a card (a story card). These cards 
are tacked to the wall where everyone can see them, and the builders grab the cards they think they 
can implement in a short time frame (one or two weeks). 

The concepts of  tracing work in such methods. The story card is the System Requirement. It 
flows down to a broad idea that flows down to more detailed ideas that flow down to a product. 
There is a way to test each product, idea, and story card. This is tracing using a few different words 
and mechanisms. The figures and tables shown in this chapter express the classic concept of  tracing. 
Use the concepts and modify them to fit in your situation and culture. 

If  a line in the tracing diagram leads nowhere, something is missing or the source of  that line 
is an unnecessary extra. The hole in the diagram tells me as the systems engineer to learn which is 
the case. If  there is a blank cell in the RVTM or other tracing table, I know the same – either 
something is missing or there is something extra and needless. 

Further Exercises 
1. Find a common object from your job (e.g. a pencil, a T-Square, a shoe). Draw the Tracing 

diagram for that object (like Figure 3). 

2. Change one of  the system requirements for the diagram in 1. Trace that change through the 
Tracing diagram. 

3. Think of  one test for each level in the Tracing diagram. 

4. Look at your original Tracing diagram. What conversations would you like to have with your 
customer based on that diagram? 

5. What did you learn about the common object that you used for 1.? 

6. What changes in the object would require no changes to the Tracing diagram? 

7. What changes in the object would require major changes to the Tracing diagram? 
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 Where We are Now 

 

At this point, the systems engineer has the basic techniques needed to build a system on 
paper. The systems engineer's job is finished. 

I caution anyone anxious to put down the text and launch out into systems building projects. 
Armed with only the preceding material, I jumped into systems engineering projects and I failed 
miserably. 

What I didn't have were the ideas given in the following chapters – the fundamentals of  
working with people everyday. Those fundamentals truly helped me to be wise. 
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 Section 3 

Other Things 
 

The previous chapters discussed techniques that the systems engineer should employ to 
build a system on paper. The following two chapters discuss other things that the systems engineer 
should do. They differ from the previous techniques in that these are things that the systems 
engineer does all day everyday. They are not limited to a specific part of  the project or any specific 
order. 
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 6 Questions 

 

Then what happens? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How did this guy get into this predicament? There is some way to go from one end of  the 
string through the ball to the other end. That end-to-end path, however, is, uh, problematic? One 
way to roll the string into an easier-to-use ball is to keep in mind a fundamental systems engineering 
question: “then what happens?” 

This, and other questions, is important to the systems engineer delivering a ball of  string that 
satisfies the customer. To do so, the systems engineer needs to know what the customer wants. So 
fundamentally, the systems engineer questions the customers to learn what they want. 

But there is more. The systems engineer is also involved in the design (creating the 
architecture) of  the system, building the system, and even explaining the system. The systems 
engineer needs information from designers, builders, managers, financial backers, and others. That 
information also comes through questions. 

Here is where much of  systems engineering collapses. 
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Systems engineers are born as engineers. Many of  us entered engineering because we like to 
work with problems – dissecting and solving them. Asking questions means working with people; 
that is different, unfamiliar, uncomfortable – something we often avoid. 

Questions 
I am a quiet, stay-to-myself  person. When a gathering of  people ends, I go someplace alone 

to recharge. A personal puzzle for me is that in spite of  this leave-me-alone temperament, I have 
always liked to ask questions. I have asked many different questions over the years practicing 
systems engineering. With some help from friends and colleagues, I have reduced my list of  
questions to something more manageable. The following pages describe and discuss those questions. 

The Primary Question 

I have what I consider to be the primary question in systems engineering. I learned it from a 
colleague who learned it from his two-year-old daughter. The question is: 

Then what happens? 

His daughter frequently asked him this question as they walked about their farm in rural 
Virginia. A typical exchange would be: 

Daughter: What are we doing? 

Father: Putting feed in the troughs for the cows. 

Daughter: Then what happens? 

Father: The cows eat the feed. 

Daughter: Then what happens? 

Father: The cows digest the feed in their stomachs. 

Daughter: Then what happens? 

Father: The female cows produce milk in their bodies. 

Daughter: Then what happens? 

Father: We squeeze the milk out of  the cows. 

Daughter: Then what happens? 

Such is the nature of  an inquisitive little girl. What she was doing, in her own precious 
manner, was asking her father to describe a system. She was modeling what a systems engineer does. 
The systems engineer learns about the system being built by helping the customer experience the 
system in their description. 

There are two situations in which I ask “then what happens?” The first is like the little girl 
and her father. I ask, “then what happens?” about the system we are making. The second is asking, 
“then what happens?” about a process. 

First is an example of  asking about a system. Refer back to the chapter on interfaces. We 
defined the interfaces for a system used to water houseplants. The information shown in the 
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architecture and defined in the interfaces came from asking “then what happens?” The exchange 
could have been: 

Customer: I take water from the faucet. 

Systems Engineer: Then what happens? 

Customer: I usually fill a large ice tea pitcher with water. 

Systems Engineer: Then what happens? 

Customer: Well, my ice tea pitcher holds a couple of gallons, and I can’t carry that around 
the house. It’s too heavy for my hands. My arthritis bothers me part of  the year. 

Systems Engineer: Then what happens? 

Customer: I put the water in a bottle in my housecoat. 

Systems Engineer: Then what happens? 

Customer: I walk around the house checking my plants and watering the ones that are too 
dry. 

Systems Engineer: Then what happens? 

Customer: I water them with the bottle. 

Systems Engineer: Then what happens? 

Customer: I put my bottle back on the kitchen counter next to the ice tea pitcher for the 
next day. 

Systems Engineer: Then what happens? 

Customer: Oh, I usually take a nap after watering my plants. 

This question and answer session allows the systems engineer to learn about the system for 
watering plants. Notice that the customer didn’t say, “I need a squirt bottle.” The bottle mentioned 
was small enough to fit in the pocket of  the housecoat. The customer implied a squirt capability in 
the conversation. 

Here is an example of  asking about a process. One example process is writing this book. 

Author: I have an idea for a book on systems engineering. 

Systems Engineer: Then what happens? 

Author: I sketch the idea in a mind map on a piece of paper. 

Systems Engineer: Then what happens? 

Author: I type a one-page outline for the book. 

Systems Engineer: Then what happens? 

Author: Little by little, I expand the book outline until it is five or six pages long. 

Systems Engineer: Then what happens? 
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Author: I start an outline page for each chapter. 

Systems Engineer: Then what happens? 

Author: I spread the chapter outlines on the bed. 

Systems Engineer: Then what happens? 

Author: When ideas come to me, I scribble them on the appropriate chapter outline page. 

Systems Engineer: Then what happens? 

Author: When I am ready, I draft a chapter. 

Systems Engineer: Then what happens? 

Author: I print that chapter and set it aside for a week. 

Systems Engineer: Then what happens? 

Author: I go on to drafting another chapter. 

Systems Engineer: Then what happens? 

Author: I go back to the previous chapter draft, read it, edit it with a pencil, and put the 
edits into the word processor. 

Systems Engineer: Then what happens? 

Author: I keep doing this until I have drafted and edited all the chapters. 

Systems Engineer: Then what happens? 

Author: This goes through to the (hopeful) publication of  the book. 

Another example is the systems engineering process. 

Systems Engineer #1: I start by meeting the customer. 

Systems Engineer #2: Then what happens? 

Systems Engineer #1: We go through many of  the questions in this Questions chapter of  
the book. 

Systems Engineer #2: Then what happens? 

Systems Engineer #1: I use some of  the thinking tools in the Thinking chapter of  this 
book. 

Systems Engineer #2: Then what happens? 

Systems Engineer #1: I try sketching a few architectures. 

Systems Engineer #2: Then what happens? 

Systems Engineer #1: I discuss those with the customer. 

The “then what happens?” question helps the systems engineer examine the entire system 
and apply a little wisdom. This question steps the systems engineer through the system with the 
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customer. The customer reveals parts of  the system that the systems engineer would not know 
otherwise. 

As a logical, rational, and caring systems engineer, I usually think that the customer will be 
happy to go through this question-and-answer description of  the system. It does work well, and it is 
for the customer's benefit. I'm usually wrong. The customer hasn't stepped through this exhaustive 
and pains-causing interchange of  “then what happens?” “then what happens?” “then what 
happens?”  

The customer sometimes screams, “You want to know what happens? I yell at you and tell 
you to stop asking me ‘then what happens?’” 

The “then what happens?” question and answer session should be repeated. People wear out 
during sessions and reach the point of  not being able to provide any more information about the 
system. They do provide plenty of  information about their state of  mind (“I’m tired of  you asking 
me the same question. Go away.”). The systems engineer should be patient with the user. This is a 
pains-causing experience, and I have never been able to gain the concept of  a system in one session. 

Give the customer a break. Give yourself  a break. Come back the next day or the next week 
and step through the question again. 

I have found that customers often describe a system differently the second time. This 
different description enables me to understand the system better and better satisfy the customer. 

A Second Question 

A second question that I ask as a systems engineer is 

Are we done? 

This question is a check for agreement. I ask it to learn if  I have understood what the 
customer has been saying. 

There are several variations to “are we done?” These are:  

 Is this everything you want? 

 Have I built something that satisfies you? 

 Is this it? 

The “is this it?” question is part of  an exercise known as “that’s not it.” I have found the 
“that’s not it” exercise to be of  great value. A typical example occurred for me several years ago 
when I was leading a 50-person team in a major effort to change a multi-hundred million-dollar 
architecture. We had met several times, listened to customers and one another, made lots of  notes, 
and nodded our heads in agreement many times. I was almost certain about what we wanted to do 
and what we wanted as a new architecture. I confidently stood at the white board, drew the 
architecture, and turned to the group for affirmation. Everyone shook their heads, “No.” 

“Great,” I said as I drew a big X across my architecture and proclaimed, “That’s not it! Let’s 
keep a record of  this and not build it.” 

My drawing was a great success and my idea for an architecture was terribly wrong. We knew 
the answers to “are we done?” “Is this everything you want?” and “Is this it?” were all an emphatic 
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NO. We had learned much in little time and were ready to continue with “then what happens?” 
questions. 

Although the “are we done?” and related questions may seem dubious, they are of  great 
value. This is contrary to what I’ve been writing so far. The systems engineer steps through a 
systematic process to learn and identify a system that satisfies the customer. Now we ask, “is this it?” 
Surely this is it. Surely we are done. We are, after all, adults and professionals. How could we possibly 
have it wrong? 

While we are adults, we are adult humans. Humans make mistakes; humans misunderstand 
one another. We do well when we can hold something in our hands. We struggle often when 
discussing concepts, and the systems engineer and customer spend much of  their time working with 
concepts. 

Expect misunderstandings; expect getting it all wrong; expect proclamations of  “that’s not 
it.” I allow time for this as I have rarely “got it right” the first time. 

I append two words to the “are we done?” questions. The two words are “for now.” The 
questions above become: 

 Are we done for now? 

 Is this everything you want for now? 

 Have I built something that satisfies you for now? 

 Is this it for now? 

I add these two words to my questions after I receive a “yes” reply to the questions. 

The exchange is: 

Systems Engineer: Is this it? 

Customer: Yes! 

Systems Engineer: Is this it for now? 

Customer: What do you mean? 

Systems Engineer: Is it likely that you will want something more or different in the 
future? 

The answer to the last explanatory question will be “yes” even if  the customer says “no.” If  I 
provide a system that satisfies the customer, he will use it. After using the system, the customer will 
learn of  a system that will be more satisfying. 

I ask the customer the “for now?” question as a signal that I expect him to desire changes in 
the future. I acknowledge that the system lacks something that the customer wants but cannot 
request now. The customer will learn what is lacking now and will be able to describe it later. We 
will continue to work together. 

Two More Questions 

I recommend two more questions for the systems engineer. These are: 
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If  you had that, what would that do for you? 

How is that a problem for you? 

These are variations on the “then what happens?” question. The systems engineer repeatedly 
asks one of  these questions until the customer replies, “I want to stop now.” When the customer 
says this, the systems engineer stops. 

Here is an example. 

Customer: I want a digital camera. 

Systems Engineer: If  you had a digital camera, what would that do for you? 

Customer: I could take pictures of  my houseplants. 

Systems Engineer: If  you could take pictures of  your house plants, what would that do 
for you? 

Customer: I could e-mail the pictures to my sister-in-law. 

Systems Engineer: If  you could e-mail the pictures to your sister-in-law, what would that 
do for you? 

Customer: She could tell me if  my plants looked too wet. 

Systems Engineer: If  she could tell me if  your plants looked too wet, what would that do 
for you? 

Customer: I would know if  I should water my plants. 

Systems Engineer: If  you knew if  you should water your plants, what would that do for 
you? 

Customer: My plants wouldn’t die. 

Systems Engineer: If  your plants wouldn’t die, what would that do for you? 

Customer: Long pause, perplexed expression, no answer. 

The systems engineer recognizes this as the signal to stop. 

The customer doesn’t require a digital camera. The customer wants (1) his plants to be 
healthy, (2) to know if  his plants need water, and (3) an occasional conversation with his sister-in-law 
about plants. A little thought and the systems engineer can provide a system to satisfy the customer. 

Notice how the customer's original requirement was far from the real requirement. This is 
often the case. Something has caused the customer to leap from his situation to a solution – a 
camera. The pains-taking and often pains-causing question-and-answer session helped both the 
customer and systems engineer find the requirements.  

Here is a similar example using the second question. 

Systems Engineer: Please tell me about your situation. 

Customer: My sister-in-law doesn’t read her e-mail often. 
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Systems Engineer: How is your sister-in-law not reading her e-mail often a problem for 
you? 

Customer: She doesn’t answer my questions soon enough. 

Systems Engineer: How is her not answering your questions soon enough a problem for 
you? 

Customer: I need answers quickly. 

Systems Engineer: How is your need for quick answers a problem for you? 

Customer: My plants are tender and frail. 

Systems Engineer: How are tender and frail plants a problem for you? 

Customer: My plants will die if  I don’t get advice from my sister-in-law quickly. 

Systems Engineer: How is this (your plants dying) a problem for you? 

Customer: Long pause, perplexed expression, no answer. 

The systems engineer recognizes this as the signal to stop. 

Once again, this repeated question reveals that the customer is concerned about plants dying. 
The sister-in-law has been the source of  information to keep the plants alive. That source of  
information, however, is sometimes unreliable. The customer desires a system that will make the 
plant-saving information reliable and readily available.  

Questions about Questions 
I have four questions that I recommend the systems engineer to consider when asking 

questions. These are: 

(1)What does the systems engineer ask? 

(2)When does the systems engineer ask? 

(3)Who does the systems engineer ask? 

(4)Why does the systems engineer ask? 

What Does the Systems Engineer Ask? 

I ask questions that provide information. I want to know what the customer does and what 
will satisfy the customer. I try to avoid asking the customer to justify his profession, his request for 
my time, and his existence. Justifications usually put people on the defensive. Their breathing 
shortens, their muscles tense, they either squirm nervously in the chair or freeze. Such limits 
thinking and communication – two actions that I want the customer to do. 

Second, I ask questions to help me understand the customer – not to start a debate or 
argument. I make requests such as, “I don’t understand what you said yesterday about the flow of  
water through flood gates. Please help me with this.” 

I try to avoid, “Your statement yesterday about the flow of  water through flood gates 
disagrees with the state commission’s report last year. Defend your position.” 



2010 © Dwayne Phillips - Page 81 

 

After understanding the customer, I go to thinking. One aid to thinking at this point is to ask 
myself, “What three things must be true for the customer to believe what he believes.” (See the 
following chapter for more about the Rule of  Three.) 

Customers disagree with one another about their beliefs. Customers disagree with their 
managers, financial backers, and noted people in their profession. There is something – some fact, 
feeling, perspective – behind the different belief. What is that something? How is that something 
influencing this customer? What can I learn from this something? 

When Does the Systems Engineer Ask? 

The answer to this section’s title is obvious – the systems engineer asks at just the right 
moment. 

The first “right moment” is what educators call the “teachable moment.” This teachable 
moment is the time when a puzzle is in front of  the customer and they are interested in finding the 
answer. They are struggling to realize something important to them and the system. As the systems 
engineer, I think of  it as the “learn-able” moment. This is the moment when the systems engineer 
will learn something that is paramount to the customer. In one of  the example conversations earlier 
in this chapter, it is the moment when the systems engineer learns that the customer doesn’t want a 
digital camera, but instead wants to keep his houseplants alive. 

The second “right moment” is when the topic has energy. At this moment people are 
excited about the subject; they want to discuss it. Let them discuss it. Use people's energy and 
excitement to gather information. 

Another “right moment” to ask the customer a question is when he has the answer. If  the 
customer is in his sunroom watering his plants, ask him about his plants. If  the customer is in the 
store buying plant nutrients, ask him about the plant nutrients he uses. These examples seem 
obvious, but I have seen people asking customers about fieldwork while they were sitting behind a 
desk and vice versa. 

A key to asking at the right moment is to observe the customer while asking questions. 
Observing the customer can tell the systems engineer when we have a teachable (learn-able) 
moment, when the topic has energy, and when the customer is more likely to have the answer to the 
question. 

Observe physical changes in the customer during the conversation. Changes that may 
indicate the right moment include: 

(1)The customer changes from speaking softly and slowly to loudly and quickly. 

(2)The customer changes from leaning back in their chair to sitting on the edge of  their 
chair. 

(3)The customer changes from arms folded across the chest to making gestures in the air. 

(4)The customer changes from eyebrows down and eye lids half  closed to raised eyebrows 
and eyes wide open. 

And the change that I notice most at the right moment: 

(5)The customer stops breathing (for a moment). 
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I hope these examples illustrate there are some moments to ask questions that are better 
than others. Information does not have a schedule. Customers don’t become excited, lucid, and 
articulate at 9 AM on the second Tuesday of  the month because that is the time for the monthly 
meeting. As a systems engineer, plan for information to be unavailable when you expect it and to be 
available when you don't expect it. 

Who Does the Systems Engineer Ask? 

The answer to this section’s title is not so obvious. The systems engineer asks the right 
person – the person who is directly involved in the situation. One main reason for asking the person 
most involved is that the systems engineer will obtain more accurate information. The person who 
waters the plants everyday is more likely to have information about watering plants. This makes 
sense. Who would ask the wrong person? I have seen many systems engineers ask the wrong person. 

I advise the systems engineer not to go to Mr. Smith and ask, “Mr. Smith, what is Mr. Jones’ 
most needed gardening tool?” 

In doing so, the systems engineer is creating a triangle among Mr. Smith, Mr. Jones, and the 
systems engineer. Information can bounce around inside this triangle and confuse everyone. In 
addition, the triangle can create animosity. For example, 

Systems Engineer: Mr. Jones, Mr. Smith told me that the lawn mower is your most needed 
gardening tool. 

Mr. Jones: Oh really? So Smith doesn’t think I mow my lawn good enough for him. Well, his 
most needed gardening tool is a paintbrush. Have you seen his house? And what he really 
needs is a small nose because he had better keep his big nose out of  my business! 

I have created triangles like the above with items far more costly and serious than lawn 
mowers. The result was far more costly and serious than a “nosey” neighbor. 

A second answer to this section’s title question is that I ask anybody related to the system. 
Often, the systems engineer will ask questions of  a person with a title like President of  the Anytown 
Gardening Society and Regional Manager of  ACME Gardening Supply Stores. Ask these persons 
and also ask members of  the Gardening Society, gardeners hired by members of  the Gardening 
Society, and checkout clerks and floor workers at the Gardening Supply Stores. Each person has a 
different perspective of  the system. Some persons will have the key piece of  information that 
enables a customer-satisfying system. The systems engineer does not know who that person is 
before asking questions. Hence, ask all of  them. 

The systems engineer can ask anybody about the system without creating triangles. Ask 
persons about the system as it applies to them. Don’t ask a person to answer for another person. 
Don’t ask a person to comment on another person’s answer. Don’t talk or ask about a person who 
is not present. 

Why Does the Systems Engineer Ask? 

The primary answer to this section’s question is obvious. The systems engineer asks to learn 
information that enables building a satisfying system.  

That answers the general question. There is, however, another question. Does the systems 
engineer ask a specific question because he wants the answer to that question or because he wants 
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other information? For example, when the systems engineer asks, “Do you want the system to be 
red, yellow, or green?” he may want the customer to answer “red,” “yellow,” or “green,” but he may 
want something else. He may want the customer to think about color and other attributes of  
appearance of  the system. I believe that broad thinking by the customer is better than specific 
thinking, and a question that leads to broad thinking is beneficial. 

This leads to a second and probably more important reason why the systems engineer asks 
questions. The systems engineer wants persons associated with the system to (1) think, (2) be 
engaged, and (3) own the result. This is why I recommend the oft-irritating question “then what 
happens?” I want the customer and the other persons to think through the system.  

Those irritating questions also engage the customer. The customer feels some unease 
answering the question over and over. That uneasy emotion stays with them, and they remember 
that conversation because of  the associated emotions.  

Persons who think, engage, and have emotions associated with a conversation own the 
result. They participated, and their knowledge and emotions are part of  the resulting system. They 
will work to have the system succeed. It is not just something that someone else pushed on them. 

Questions to Avoid 
Now that I have written several thousand words about the value and necessity of  questions, 

allow me to state a warning: 

It is easy to upset people when asking questions. 

In my younger days, I upset many people while asking questions. I didn’t understand why 
persons were so irritated with me. All I was doing was trying to learn from them so we could build a 
satisfying system. Why were they so angry with me?  

There are key words to avoid when asking questions. The first is “why.” 

 Why do you do this? 

 Why do you do that? 

 Why are you mad about these “why” questions? 

The word “why” puts people on the defensive. They have to justify themselves. As stated in 
the previous section, ask questions that lead to information instead of  justifications. 

Despite its drawbacks, the “why” question is a natural one for me. I'm dying to know the 
reason behind someone's use of  a system – especially when it doesn't make sense to me. Not asking 
“why, why, why?” is hard for me to avoid. I have found an alternative to “why” and I describe it in 
the next section on non-question questions. 

The second word to avoid is “you.” 

 Are you listening to me? 

 Are you alright? 

 Do you often have difficulty with questions? 

 Why are you turning red? (has both “you” and “why”) 



2010 © Dwayne Phillips - Page 84 

 

The word “you” points at the other person. 

“You asked me to come here.” (Hint – you must need me to help you do your job. You 
must not be very smart.) 

“You need a new system.” (Hint – you aren’t able to do your job with your current system. 
You must not know how to use it properly.) 

The word “you” often comes across as blaming. 

“You want a system that is easier to use.” (Hint – if  you would just learn how to use the 
current system, we wouldn’t have to waste time on a new one.) 

Instead of  “you,” try to use words such as “we,” “us,” and “our.” These shift the emphasis 
to the working relationship between the systems engineer and the customer. Examples that counter 
the above “you” statements include: 

 How is our conversation? – NOT Are you listening to me? 

 How are we doing? – NOT Are you alright? 

 We need a new system. – NOT You need a new system. 

 We can create a system that is easier for all of  us – NOT You want a system that is easier to 
use. 

Another word to avoid is “problem.” “Problem” questions are similar to “why” questions in 
that they put people on the defensive. They defend or justify themselves instead of  thinking about 
the system. Systems engineers often tell people that they have problems and that ruins the search for 
information. Example information killers include: 

 What is the problem with the system? 

 How is that a problem? 

 What is the difficulty here? (synonyms of  “problem” are also to be avoided) 

 What are the issues here? (another synonym) 

Instead of  using the word “problem,” seek words that imply less fault on anyone’s part. 
Some words to use instead are “situation,” “our place,” and “where we are.” 

 What is our situation here? 

 Please describe our work here. 

You've probably noticed that I've contradicted myself. Earlier in this chapter I 
recommended asking “How is that a problem for you?” and now I recommend not using the word 
“problem.” The earlier question has been a powerful information-producing one for me. Use it with 
care and rephrase it if  necessary to “How does that bring you extra work?” or “How does that 
change your day?” 

A final word to avoid is “help.” If  the systems engineer can help a customer, that implies 
that the systems engineer is superior to the customer. For example,  
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How may I help you? (Hint – you obviously need a superior person like me around to do 
your job.) 

Men especially dislike being helped. That implies that you have a problem, and I can fix it for 
you. Men solve problems; we don’t have problems, and we don’t need help. 

Instead of  “helping” the customer, try to speak in terms of  working with the customer. For 
example, “How can we work together on this?” 

I cannot provide a complete list of  words that do not offend or imply fault. Some persons 
will have a negative reaction to the word “situation” while being fine with “issue.” In general, notice 
the person’s reaction to questions and statements. If  the customer reacts to a word, ask him about 
that word. Explain that you are not implying fault and find a word that works for that customer. 

In addition to avoiding particular words, try to avoid labels and interpretations. Stay with 
facts in what you say. This may sound simple, but labels and interpretations are so frequently used in 
our culture today that it is easy to slip into them. 

Fact: This system has 5 subsystems spread across 20 cities operated by 200 people. 

Label and Interpretation: You have a large, complex system. 

The words “large” and “complex” are my labels based on the interpretations of  the facts. 
Calling the system “yours” is also an interpretation. The customer may hear criticism in these labels 
and interpretations. Here are several more examples: 

Fact: I may have to work 80 hours on this.  

Label and Interpretation: This looks difficult. 

Fact: This session lasted 10 minutes. The average session lasts 20 minutes. 

Label and Interpretation: You’re easy to work with. 

Fact: I need the approval of  people in three different organizations. 

Label and Interpretation: This could be tricky politically. 

A final item to avoid in questions is using questions as hints. For example, 

Question: Why do you use a cell phone? Why don’t you use a regular phone? 

Hint: Use regular phones and you won’t need a new system. 

If  the systems engineer wants the customer to use a regular phone, say, “Using a regular 
phone instead of  a cell phone will cut the system cost in half  and also cut in half  the training time for 
users. Is this something we can try?” 

Non-Question Questions 
I end this chapter on questions with a method that has worked best for me. It is a non-

question question. I use an “I” statement followed by a request. For example, 

“I don’t understand how that will contribute to the system. Please help me understand.” 
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Starting with “I” helps me to avoid a couple of  potential hazards. First, I am not using the 
blaming “you” statement. I am also avoiding the justification-seeking “why” question.  

The “I” statement is an honest one about the subject and me. I am expressing what I know 
about the subject and my relationship to the subject. 

The request is an attempt to gain information from the customer. The request always begins 
with “please” (a smile also helps) and proceeds to the request. In the request, I avoid “why,” “you,” 
“problem,” “help,” and other words that put the customer into the defensive mode. 

Here are some examples of  rephrasing harmful questions. 

Harmful: You didn’t hear my question. 

Not so Harmful: I am not sure I stated my question well. Please repeat it back to me. 

Harmful: How can I help you with your problem? 

Not so harmful: I want to work on the current situation. Please tell me how we can work 
together. 

Harmful: Why did you do that? 

Not so Harmful: I don’t understand. Please describe what just happened. 

Concluding Thoughts 
I'm a seeking person. I always wanted to know about things – how they worked, why they 

worked, how they fit into the world. People – what they do, the systems they use, the system they 
are apart of  – fascinate me. Where did they originate? How did they move from their origin to this 
place on this day? 

I satisfied my seeking by asking questions. As a kid, I asked my fair share of  questions. I 
wasn't, however, as outspoken in my curiosity as the farmer's daughter and her “then what 
happens?” sessions. I was quieter – so I spent much of  my time wondering about the puzzles I saw. 
I invented answers to my unspoken questions.  

Then I dabbled in systems engineering. Most of  my invented answers were wrong – no 
surprise in retrospect. Also no surprise was that my answers led to customers dissatisfied with 
systems. 

I learned a little and started asking my questions out loud. The pages of  this chapter that 
describe how not to ask questions give an idea of  what I did during my first years of  asking 
questions. In addition to systems that didn't satisfy customers, the customers were angry with me.  

I learned much about how to ask questions. The pages of  this chapter that describe how to 
ask questions are the result of  those lessons. I am grateful to many people who helped me through 
those lessons. 

In conclusion, I recommend 

1. Ask a few questions with the best intentions. 

2. Observe the customer's reactions to the questions. Do your questions enable or inhibit the 
flow of  information? 
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3. Alter your questions per your observations. 

4. Return a few days later and ask a few more questions. 

5. Repeat the above. 

Suggested Exercises 
1. Write three “then what happens” exchanges that might occur between you and your 

customer. 

2. Think of  three projects that didn't go as well as you wanted. How might the “are we done?” 
question have helped? 

3. Repeat exercise 1. using the “if  you had that, what would that do for you?” question. 

4. Repeat exercise 1. using the “how is that a problem for you?” question. 

5. Describe three important “learn-able moments” you have experienced. 

6. List three words that you have used in questions that put a customer on the defensive and 
stopped the exchange of  information. 

7. For the three words of  exercise 6., what questions could you have used instead? 
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 Where We are Now 

 

The systems engineer works with two items: (1) the customer and (2) information from the 
customer. 

The information has two of  its own aspects: (1) obtaining information and (2) using 
information.  

The previous chapter on questions discussed how to obtain information. The succeeding 
chapter discusses how to use the information – by thinking.  
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 7 Thinking 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The obvious choice for a cartoon for this chapter would be a drawing of  Rodin's The 
Thinker. Too obvious. Somewhere I got the idea of  Dobie Gillis standing in front of  the statue of  
The Thinker in Central City's Park on the old TV show “The Many Loves of  Dobie Gillis.” That 
show is old as I only saw it a few times in reruns. In each episode, Dobie (played by Dwayne 
Hickman – us Dwayne’s have to stick together) would stand in front of  The Thinker, face the 
camera, and talk to the audience at home. This was Dobie's thinking time.  

The systems engineer needs to find his Thinker statue in the park – a time and place to 
think. 

Creating a system that satisfies the customer is the primary responsibility of  the systems 
engineer. That task requires thought. Hence, the systems engineer needs to do a lot of  thinking. In 
addition, the systems engineer monitors the thinking of  the people involved with the system. 

On the following pages I describe some of  the thinking techniques that have helped me. I 
don't cover every technique I have experienced. I hope that you find some of  these useful. What is 
more important is that I hope these spur you to think about your thinking.  

Decisions, Decisions 
The systems engineer has to make decisions. Decide which is the best path through the 

architecture drawing. Decide what type of  interface we should use. Decide who best knows the 
requirements for the system we are considering. These are a few of  the fundamental decisions facing 
the systems engineer. 
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The first item to recognize is that decisions just don’t happen by themselves. As much as the 
systems engineer uses tools in systems engineering (like architectures, interfaces, and requirements), 
these are just tools. Tools don’t make decisions. The tools present information to help better 
examine the situation. People have to decide and people have to live with the consequences of  their 
decisions. If  at any time in providing a system I observe a decision but cannot connect people to 
that decision, I should bring that to everyone's attention. If  we cannot find the “deciders,” we 
should decide that question again. 

Decisions are not permanent. I can change my mind and decide to go another way at a 
future date. Changing my decision is not an admission of  failure. It is acknowledging that something 
has changed in what I know. I have learned something and I can make a better decision. 

To help in changing decisions, I recommend documenting decisions. Record each decision 
on one page of  paper (or one unit of  storage in a computer tool). For each decision, record: 

(1) The situation 

(2) The alternatives 

(3) The decision 

(4)  Who decided 

(5) The reasons behind the decision 

I feel that (5) is particularly important. I make decisions based on the situation as I know it 
today. If  I learn something pertinent to this situation, I can go back to the decision’s page, look at 
what I did and why I did it, and consider if  my new knowledge will cause me to change my mind. 
Situations change. For example, the relative prices of items in an architecture fluctuate. These price 
changes can make a discarded alternative more attractive than a chosen one. That is a great time to 
change my decision. 

One alternative to any decision should be “I won’t decide today.” Write that alternative on 
your decision page. Choosing “I won’t decide today” is not being indecisive – that is far from it. 
Choosing this is stating that “information for this decision is not yet available” or “we don’t have to 
decide this yet. We can wait a while.” Rushed decisions are often worse than delayed decisions. As 
the systems engineer, determine when a decision is needed. 

While discussing decisions, let me pass along one decision-making tool: the coin flip. I don’t 
recommend doing something if  the coin is heads and something else if  the coin is tails. I do 
recommend flipping the coin when forced to choose between two items. Tell yourself, “Heads 
means item A and tails means item B.” Now flip the coin. While the coin is in the air, you will 
usually feel in your heart which item you want. Catch the coin, don’t look at it, and go with what 
tugged at your heart while the coin was in the air. 

Trade Studies – A Decision-Making Tool 
The systems engineer decides among items in an architecture. A thinking tool for these 

decisions is the trade study. In a trade study, the systems engineer examines possible alternatives for 
an item and assigns a score or value to each alternative. At the end of  a trade study, the systems 
engineer can recommend an item to put into an architecture. 
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The systems engineer should recommend the best alternative for the item. “Best” is the key 
term here. Best is determined by what is in the trade space with the trade space being those 
attributes that the customer considers important. Those attributes are expressed in the customer’s 
requirements. 

A simple tool to express the information found during a trade study is a table. The table lists 
the alternative items or candidates down one side and the attributes or the trade space across the 
top. Inside the table are values that represent an alternative’s scores for each attribute. Also in the 
table are recommendations for which item to choose or any further study that should occur. 

Let’s illustrate a trade study by considering a laptop computer. Figure 1 shows a trade study 
table for this example. Down the left side are listed the candidates for the computer. Across the top 
are the attributes or the trade space for each candidate. For this example, the customer’s 
requirements indicate that the laptop computer is desired to be small, lightweight, have a long 
battery life, have a good keyboard for typing, and is handy when traveling. 

 

Figure 1 – A Table Showing the Results of  a Trade Study 

 

The items listed across the top of  the table represent the trade space. These are the items 
that are important to the customer, the things the customer wants the systems engineer to consider, 
i.e. the customer's requirements. Take care when learning the requirements as they are to be used 
here and in other important aspects of  systems engineering. 

The numbers inside the table represent what was learned during the trade study. Some of  the 
numbers are measured (Size and Weight). One number (Battery Life) was measured, but the 
measurement depends on what tests the systems engineer used while measuring (watching a movie 
or just typing). Several of  the numbers are subjective (Keyboard Usability and Travel Fit). 

To the far right of  the table are comments that summarize the trade study. The “winner” is 
rarely obvious as the winner is based upon the scores in the middle of  the table, and these scores are 
mostly based upon someone’s opinion.  
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The trade study provides information; the systems engineer provides the decision. 

I urge the systems engineer to do as much testing and as little reading as possible during 
trade studies. Many trade studies are conducted by reading a manufacturer’s spec sheet. I can read to 
learn about the size and weight of  a laptop computer. Often, however, manufacturers issue spec 
sheets months before a product is available. Seeing the item is much better than reading about it. 
When I see the item, I know it is real and not just a marketing brochure. 

Better than seeing the item is touching it. I find that many systems engineers omit this step. 
We try to be intellectuals – thinkers – and sometimes stress that aspect so much that we neglect to 
actually put our hands on an item that is before us. 

Finally, test the item. I have experienced many cases in which testing showed that a spec 
sheet was incorrect. Sometimes the simplest items like how much a laptop computer weighs differs 
from its spec sheet. Scores in the trade study table based on testing are far more reliable than those 
gathered via other means. 

Thinking Tools 
The remainder of  this chapter will describe tools that have helped me think. Some are 

commonplace but not commonly used much anymore (pencil and paper). Others are used more 
often today than before, but often misused (peer reviews). Consider each and remember that tools 
are just tools – something to use in the right situation. The systems engineer has to decide which 
tool is right for which situation. 

The Rule of  Three 

The Rule of  Three is a meta-tool or a tool that helps with tools. When using any thinking 
tool think of  three examples, three reasons, three of  whatever you are considering. If  I cannot think 
of  three, I probably haven’t thought enough. 

For example, when I feel that I have a design for a system, i.e. I’ve drawn an architecture and 
selected a path through it, I should think of  three things wrong with that design. At first, that sounds 
strange, but surely there is something wrong with my design, and if  there is something wrong with it 
there are probably three things wrong with it. Finding three things wrong with my design may cause 
me to alter the design. Those three wrongs may cause me to stay with it as it is. There may be 33 
things wrong with my next best design, so having a design with only three things wrong is great. 

True to be False 

This tool is for use when a group of  people has reached consensus on a decision. When a 
group has agreed on X, the group should ask, “What must be true for X to be false?” (Be the wrong 
decision.) This question helps the group find the faults in its thinking. 

Adding in the Rule of  Three, the group should ask, “What three things must be true for X to 
be false?” 

Consider the laptop computer example. The group decides to use a Dello laptop computer 
because it is light enough to carry on trips yet still has a large enough keyboard for comfortable and 
fast typing. 

The question is, “What three things must be true for the Dello to be a bad choice?” 
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Some answers include: 

(1) The user could be so large physically that the Dello keyboard is too small. 

(2) The user could have physical ailments that prove the Dello to be too heavy. 

(3) The user may never move the Dello from their desk and not care about ease of  
carrying. 

This “true to be false” question and these three answers can help me to reconsider the 
requirements I used in the trade study. I could talk with the customer more and learn the likelihood 
that these conditions exist. I may change my decision, or may conclude that the Dello was the 
correct choice. 

The Difference that Makes a Difference 

There are many attributes in the trade space. These attributes help the systems engineer see 
the deciding difference among the different items. I have often found there to be many differences 
among the different items. I have also found that these many differences only confuse me. 

What I am seeking is the difference that makes a difference – the one or two differences that 
will clearly separate the items under consideration. This is the information to record on the decision-
documenting page. This is the point that explains architecture and item choices to customers, 
managers, and financiers.  

Applying the Rule of  Three, find the three points that clearly separate the items under 
consideration. Another use of  the Rule of  Three is, find three reasons why there is only one point 
that clearly separates the items under consideration.  

Paper 

Paper is an excellent thinking tool that is being neglected more and more each day. When I 
mention paper, I include white boards, chalkboards, flip charts, and other physical writing surfaces. 

These physical surfaces force me to write with my hands. I have yet to find a substitute for 
physically writing my thoughts and seeing them in front of  me. Thoughts run through my mind, 
these thoughts direct my hand, and when I see the thoughts on paper I think about them again. 

I love to use computers for almost everything these days; most systems engineers do. 
Nevertheless, I also pause and scribble physically. 

Consider the systems engineering architecture figures. I recommend drawing these on a 
white board, gathering a group of  people around the board, and working through the different paths 
physically as a group. Once all the work and thinking are finished, have someone enter the results 
into a computer. 

Think first on paper; compute second. 

Applying the Rule of  Three, find three different ways other than the computer to express 
thoughts. 
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Something Wrong 

No one is perfect, and no technique is perfect. Every systems engineer I have met has made 
mistakes. Every tool I have used has enabled me to make mistakes. If  there is nothing wrong with 
the decision a systems engineer has made, the systems engineer hasn’t thought about the decision 
enough. 

Applying the Rule of  Three, what are three things wrong with this decision? 

Choice 

One concept I hope to have expressed in this book is that there are many choices available 
in systems engineering. Given all these choices, I still hear systems engineers and customers say, 
“Well, we had no choice here. We were forced to do this.” Such “no choice” statements should 
squeal as a siren to a systems engineer. 

I once worked with a customer who had his mind set on the type of  system that he needed. 
Only one system would do. We proposed a completely different type of  system, but the customer 
repeated, “We cannot use that other system. We have no choice.” 

The customer was saying, “We haven’t thought of  a way to use that other system.” 

Now we had something to work with. We had to think of  ways the customer could use the 
system we were proposing. 

Interpret the “we have no choice” statement as “we haven’t yet thought about this.” 

Applying the Rule of  Three, think of  three new ways that you have never used the system. 
Think of  three ways you could use this other system. 

Time 

I am busy in my job. Most of  the customers I have worked with have also been quite busy in 
their jobs. We rush from one thing to another every day. 

Who has time to think? 

As the person responsible for thought, the systems engineer must make the time to think. I 
recommend that the systems engineer set aside one quarter of  the day for thinking. Most people 
regard this advice as pure folly. I have had jobs where such thinking time seemed to be folly. There 
was no way I could set aside time. I had no choice over my daily activities. Oops. There was the “no 
choice” statement. What happened was that I had not thought of  ways to create time for thinking. 

Applying the Rule of  Three, find three activities in the day that can be eliminated and 
replaced by thinking time. 

Picking Up Trash 

I recommend that the systems engineer have some period of  time each day to think alone. 
No interruptions, no conversations, and no one else interacting with you. Just some time (a part of  
the quarter time mentioned above) when the systems engineer is alone in thought. 

Several years ago I had a busy job where I struggled to find time alone to think. I found time 
to think by acting as the soft drink boy. Our office had a small refrigerator that held soft drinks for 
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employees. Someone had to restock the refrigerator and put the warm soft drinks in the back and 
the cold ones in the front. I did the restocking and shuffling task a couple of  times each day. That 
required about 30 minutes. 

Everyone in the office knew that the refrigerator needed to be restocked. Almost everyone 
in the office ignored this menial task. They were a bit embarrassed to see me doing it, so 
embarrassed that they didn’t talk to me while I restocked the refrigerator. Ah, they wouldn’t talk to 
me. I had uninterrupted time to think. 

I told this story to a friend who immediately identified with it. Years before he worked as a 
professor in a university. He too struggled to find time alone to think. His solution was to walk 
about the campus and pick up litter. No one interrupted him. He would pick up litter until he had 
enough quiet thinking time and return to his busy, noisy office. 

Picking up trash and restocking the refrigerator are tasks that everyone knows need to be 
done, most are embarrassed that they don’t do them, and they will leave you alone while you do 
them. 

Applying the Rule of  Three, find three menial tasks that people are embarrassed because 
they don’t do them. Do these tasks to create solitary thinking time. 

Reviews 

Reviews are a special time, place, and gathering of  people for thinking. A review is a meeting 
where people state what they believe to be true about a system and a project. People listen, talk, 
think, and ensure that they are all talking about the same thing. The tire swing example shown in the 
chapter on requirements is a classic case of  why systems engineers hold reviews. 

There are many types of  reviews. The book “Handbook of  Walkthroughs, Inspections, and 
Technical Reviews” [Freedman] describes several types and how to conduct them. The book 
“Software Inspection” [Gilb] discusses reviews that are peculiar to the software field. I like both of  
these books and refer to them often when holding a review. 

A part of  any review is asking questions. There are questions that help make visible what 
other people are thinking. There are also ways to ask questions that elicit thinking. It is unfortunate, 
but there are many more ways to ask questions that elicit fighting, arguing, and no thinking. Please 
take care and read the previous chapter about Questions. 

A basic request at a review is, “I want to know where you are in this project. Please tell me.” 
That request establishes the current context or state of  a project.  

The next request points to the rest of  the project. It is, “I want to know how we go from 
here to the end of  the project. Please tell me.” 

These two requests, stated in this manner, help to establish the current and future state of  a 
project. As simple and basic as that sounds, I have been in several large projects costing tens of  
millions of  dollars where people could not state those items. 

There are special reviews known as milestones. These occur at points in a project where it is 
imperative that everyone has a common understanding of  the system being provided. In the strict 
systems engineering sense, there are several milestone reviews whose names have become part of  
the slang of  the field. These include: 
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(1) Preliminary Design Review or PDR 

(2) Critical Design Review or CDR 

These terms are so commonplace that people speak of  a project in these terms. I often hear, 
“We are just past PDR,” or “we are about to CDR the project.” 

At PDR, people meet and state what they believe the requirements for the system to be. At 
most PDRs, people agree on 80% of the requirements, but learn that there are some 
misunderstandings that need to be clarified. 

At CDR, the people who are to build the system state their basic design and how that design 
will meet the requirements agreed to at PDR. The design engineers show their design. The systems 
engineers show how the design meets the requirements. 

One concept of  a milestone is that the project cannot progress until everyone agrees on 
these matters. In the case of  the PDR and CDR, the project halts until everyone agrees on the 
requirements of  the system and how the design of  the system will meet those requirements 
respectively. 

Milestones can be helpful in providing a system because they help focus thinking. People 
understand that future work will not occur until after the milestone is passed. This “we will meet, 
think, and decide to keep working or stop” occasion spurs concentration. In my experience, people 
want to pass milestones, so they concentrate more, practice their thoughts, and practice how they 
express their thoughts. 

Applying the Rule of  Three, think of  three things you use now that you consider to be 
reviews. Also, think of  three points in time that would be good for reviews. 

There is one type of  systems engineering review that I disdain and discourage. That is the 
DDR or Dinner Design Review. The DDR occurs after a long day of  engineering meetings. People 
go to dinner and discuss the system just a little bit more. Eight hours of  discussion wasn’t enough, 
so now, with the aid of  fatigue, too much food, and a little alcohol, some people want to make 
crucial decisions. 

DDRs are an excellent place for poor thinking, so please avoid them. 

Applying the Rule of  Three, think of  three “reviews” that you now use that result in poor 
thinking. 

Time Out 

An anti-review is the time out. People stop and think during a time out. I call the time out an 
anti-review because reviews are driven by events. “We are ready to discuss requirements, trade 
studies, or designs, so let’s hold a review.” Times out are driven only by time. I recommend the 
systems engineer have the job of  calling the time out at regular time intervals. 

People think and have conversations at time outs. Thought provoking questions include: 

(1) What are the top items we should be thinking about now? 

(2) What are the things we are thinking about now? 

(3) What puzzles you now? 
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(4) What do you hope will happen soon? 

(5) Who do you want to walk in the door now and help us? 

(6) When do you think something big (good or bad) will happen? 

(7) Where would you most want to be now? 

(8) How are we thinking? 

Apply the Rule of  Three: What are three other questions you would think about during a 
time out? What are three things besides events (milestones) and time (time out) that would spur a 
thinking meeting? 

Closing Thoughts 
Providing systems that satisfy a customer is a difficult endeavor. I've often wanted to build 

systems that were “no brain'rs,” but I haven't encountered any. It seems that good systems 
engineering requires brain’rs (thinking). 

I have many systems engineering failures in my past. In hindsight, the failures occurred when 
I was busy with something. That busy-ness took away thinking.  

As the systems engineer, think about your thinking. More important, think about how 
everyone else is thinking. The other people involved are present because of  their brains, i.e. their 
ability to think. Is it worth my thoughts to ensure that they are contributing their thoughts? The 
answer to that question is truly a “no brain'r.” 

Suggested Exercises 
1. Describe a past project where you spent too much time using a computer and not enough 

time thinking. What would indicate that in future projects? 

2. Describe a past project where you were too decisive, i.e. you made decisions early, 
refused to reconsider them, and suffered because of  it. 

3. Describe a past project where you were too indecisive, i.e. you delayed decisions too long 
or changed your decisions too often and suffered because of  it. 

4. Consider a decision you are making on a current project. Draw a Trade Study table for 
this decision. 

5. Think of  three “thinking tools” you use that are not mentioned in this chapter. 

6. Think of  three ways you could use each of  the thinking tools described in this chapter. 

References: 
[Freedman] “Handbook of  Walkthroughs, Inspections, and Technical Reviews,” Daniel P. 

Freedman, Gerald M. Weinberg, Dorset House Publishing, 1990. 

[Gilb] “Software Inspection,” Tom Gilb, Dorothy Graham, Addison-Wesley, 1993. 
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 Where We are Now 

 

The systems engineer now has all the basics to examine an entire system and apply wisdom 
on the way to providing satisfying systems. I have covered the techniques as a process and added a 
couple of  other techniques to use everyday. 

Systems engineering is simple, but not easy. Just follow the steps wisely and don't make any 
mistakes. Well, okay you will make some mistakes. Keep thinking, hold reviews, and call time out 
regularly. These things will help you catch and correct your mistakes sooner. 
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 Section 4 

General Systems Thinking  
 

The final section of  this book comprises one chapter on the subject of  General Systems 
Thinking. I have not seen a book on systems engineering that discusses this topic. I include it 
because of  its importance to systems engineering and systems engineers. Studying this topic has 
helped me immensely as a systems engineer. What may seem strange is that it has helped me most in 
working with the people involved in systems – the customers and the other engineers. I hope you 
gain something from this section. I wish that you study the topic further on your own. The benefits 
have far outweighed the effort for me. 
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 8 General Systems Thinking  

I began my professional career as a technician. I moved to being a programmer and from 
there to being a software engineer. I later delved into systems engineering. My quest for higher levels 
of  abstraction led me to a field called General Systems Thinking. I didn't know what General 
Systems Thinking was, but I had heard it mentioned a few times in seminars and books.  

My study of  the topic has led me to this chapter. I included this chapter on General Systems 
Thinking in this book on systems engineering because:  

(1) Systems engineering is a subset of  General Systems Thinking. Hence, a background 
material for a systems engineer. 

(2) The principles have helped me as a systems engineer. 

What is General Systems Thinking?  
The generally accepted father of  General Systems Thinking is the late Ludwig Von 

Bertalanffy. See [Davidson] for Bertalanffy's story and [Bertalanffy] for some descriptions of  
General Systems Thinking.  

I will explain General Systems Thinking with an example. In the 1980s, the University of  
Nebraska was a national powerhouse in college football having won several national championships 
the decade before. Nebraska played football in the Midwest during late fall and early winter. The 
weather was often brutal. Nebraska played a style of  football optimized for this weather and 
recruited players who fit this style. Nebraska dominated play in the Big Eight conference.  

At the same time, Florida State University (FSU) was a rising football power. FSU, however, 
didn't command the same respect in college football as Nebraska. To schedule top teams and gain 
notoriety, FSU played many games on the road – all over the country. FSU couldn't optimize its 
style of  play and players for the warm Florida weather. 

Eventually, Nebraska and FSU would meet in major bowl games in January in places like 
Arizona and Florida. Nebraska, its team optimized for harsh Midwest weather, faltered in warm 
weather. FSU, its team built to adapt to different types of  weather, won most of  these contests. 

This illustrates several principles from General Systems Thinking:  

1. A system (in this case a football team) that is optimized for one situation, does not adapt 
well to other situations. 

2. A system (another football team) that is not optimized for one situation retains the 
ability to adapt to other situations. 

These two principles apply to systems in many fields far from college football. For example, 
the Kodak corporation was specialized to be the best chemical-based photography company in the 
world. This specialization didn't allow them to adapt to digital photography quickly. Another 
example is the retailer Wal-Mart. They did not specialize in selling one type of  product. Wal-Mart 
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sells whatever the consumer wishes to buy. This allows Wal-Mart to adapt to changing markets and 
consumers' tastes.  

Let's move from football and business to biology to consider an engineered strain of  corn. 
This corn is optimized for one type of  climate and growing conditions. If  those conditions change, 
the entire strain of  corn will die because it cannot adapt.  

Now consider computer architecture (my formal background). In the past 30 years, various 
researchers have set out to build custom processors optimized for small problem sets. With few 
exceptions, the general-purpose processors from chipmakers like Intel provided greater performance 
and became available before the specialized processors. The chip-making technology moved quickly. 
Trying to make a specialized processor in a rapidly changing environment violated the General 
Systems Thinking principles.  

The above two principles apply to college football, business, biology, and computer 
architecture as well as other fields. That is the contribution of  General Systems Thinking: finding 
principles from specific fields that apply to many fields. 

A study of  General Systems Thinking will show many similar examples. Founders of  the 
field came from biology, mathematics, economics, psychology, and computing. Practitioners come 
from these any many more specialized fields. My personal mentor in General Systems Thinking is 
Gerald M. “Jerry” Weinberg. The two principles given above are from one of  Weinberg's books, and 
I quote Weinberg in many places in this and other chapters.  

The influence of  Weinberg is similar to that of  other General Systems Thinkers. Weinberg is 
able to provide insight and instruction to people who work in vastly different fields. His lessons 
apply to medical doctors, computer programmers, government bureaucrats (like me), economists, 
biologists, and others.  

I link General Systems Thinking and systems engineering with a few definitions. Here are 
two.  

Systems Analysis – Generally synonymous with Operations Research. The 
interdisciplinary search for more efficient ways of  using existing talent and technology to 
improve a system.  

Systems Engineering – Similar to and sometimes indistinguishable from Systems 
Analysis. But this approach is more likely to consider the need for a system's fundamental 
redesign and replacement.  

[Checkland] 

My twist on these definitions is that  

Systems engineering is the interdisciplinary search for more efficient ways of  using existing talent and 
technology to replace a system.  

I emphasize two words to tie General Systems Thinking to systems engineering. The first is 
"interdisciplinary." Let's apply principles from many fields (biology to economics to game theory) to 
the situation at hand to produce a system that satisfies a customer.  

I recommend the interdisciplinary approach from personal experiences (emphasis added):  
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What has worked best when dealing with unmastered complexity is a combination of:  

1. Learning from analogous situations outside the present situation.  

2. Learning how people think and combining that thinking with facts and 
preconceptions to determine action.  

[Weinberg 1988] 

Working as a systems engineer has been "dealing with unmastered complexity."  

The second word from my twist on the previous definitions is “replace” as in replace a 
system. I have never provided an original system to a customer. Every system has replaced an 
existing one. Often, the customer was doing everything by hand – like the potato farmers in the first 
chapter who sorted their potatoes by hand. Doing everything by hand is a system – one without 
machines, but still a system. 

Flashbacks  
Previous chapters in this book have already discussed some of  the principle themes of  

General Systems Thinking.  

Conversations  

The systems engineer has conversations with other people. These other people include the 
customers who will use the system and the other engineers building the system. Kenneth E. 
Boulding ([Boulding] and many other places) wrote and taught about the value of  the conversation.  

This is the characteristic that distinguishes man from the lower organisms – the art of  
conversation or discourse.  

[Boulding]  

Boulding described knowledge using the word "image" and conversation or discourse as 
delivering "messages" that modified the image or our knowledge. Boulding believed that the ability 
of  people to grow the knowledge in conversation is one of  man's great attributes.  

The systems engineer works with knowledge – knowledge from the customer and from 
other engineers. Much of  the knowledge comes not through texts or specifications, but via 
conversation. As I stated earlier in the text, this is where much of  systems engineering breaks down 
– the inability or unwillingness to engage in conversation for the exchange of  knowledge.  

Trade Offs  

The systems engineer uses trade offs when deciding which items go into the sections of  an 
architecture. Weinberg provides an excellent statement of  General System Thinking's view of  trade 
offs:  

Because trade offs are universal, we can often use the trade off  concept to reason 
backwards from effects to causes. The reasoning process goes like this:  

1. We are doing X instead of  Y.  

2. We must be getting a benefit from X – what is it?  
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3. We must be losing something from not doing Y – what is it? 

[Weinberg 1988] 

There are no perfect trade offs where choice X is better than choice Y in all respects. If  I 
find myself  stating that X is better than Y in all areas, I am not considering all the areas; I am 
missing something and should think again. Perhaps X is better than Y in the important areas, and Y 
is only better than X in a few areas that don't matter in this situation. If  that is true, good – choose 
X. I, however, have experienced this in only a few cases. Going back through the process has always 
shown me attributes that I wasn't considering.  

Thinking  

The systems engineer is responsible for the thinking in providing a system. 

The fallacy of  typological thinking, as with all illusions, lies not in the explanations 
themselves, but in the failure to consider other explanations.  

[Weinberg and Weinberg 1988]  

The problem with thinking lies not in the thinking, but rather when the systems engineer 
stops thinking. Problems ensue when the systems engineer stops considering other alternatives.  

This begs the question: can I ever stop thinking? Part of  the answer is that I will stop 
thinking. I don't think much while I sleep and I tend to spend about one third of  my life sleeping. (I 
have met many systems thinkers who claim to think and solve problems while sleeping. I do not 
doubt their word, and while I envy them, I have never had this good fortune.) A better phrase of  the 
question is, should I ever stop thinking?  

The answer that keeps returning to me is that as a systems engineer I should always be 
thinking; I should always keep considering other alternatives. The "Rule of  Three" given in the 
chapter on thinking is one tool to help me continue thinking. Another form of  that rule is:  

Think of  three reasons (questions, problems, concepts, alternatives) for anything. After 
that, apply the Rule of  Three repeatedly. 

Questions  

I've been a better systems engineer by asking questions of  others and myself. 

We have a curious capacity for giving ourselves examinations. We know how to write the 
questions that we have answers for.  

[Boulding]  

Boulding's statement causes me to consider several things. When I am struggling to 
understand something or find a course of  action, I start asking myself  questions. If  I can find the 
right question, I soon have the answer and can move forward from my predicament.  

My questions, however, are limited by my imagination. Boulding says that I only ask 
questions for which I have answers. My knowledge of  the system limits the questions I can ask 
myself. I should turn to other people who have questions that I don't. Perhaps my questions of  
them will cause them to ask their own questions and provide additional answers.  
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Asking questions that cause other people to think isn't easy. What I know of  this I learned 
from the best "question asker" I have ever met – Jerry Weinberg. 

A meta-question is a question that directly or indirectly produces a question for an 
answer.  

[Weinberg 1988]  

Weinberg loves to ask meta-questions. Perhaps because they cause the other person to 
respond with a question – a question that will give the other person the answer they are seeking.  

Weinberg once taught college classes. His favorite test questions were: 

1. Write a question that would be an appropriate question for an examination in this course at 
this time. 

2. Answer the question you wrote in part 1.  

[Weinberg 1988]  

Weinberg's approach to writing practice (from one of his seminars on writing) was a 
paraphrase of  this:  

1. Decide what would be the best writing exercise for you. 

2. Do 1.  

3. Do 1. and 2. for the rest of  your life.  

I extrapolate these questions to systems engineering as:  

1. What kind of  system would satisfy your customer?  

2. Design the system from 1.  

and 

1. If  you were an excellent systems engineer, what questions would you ask the 
customer and your fellow systems engineers?  

2. Ask the questions from 1. 

General System Thinking Principles for the Systems Engineer  
This section contains some concepts from General Systems Thinking that have helped me as a 
systems engineer. Let's begin by highlighting some principles that can enable the systems engineer 
with a definition of  systems thinking. 

Systems thinking: An epistemology (theory) which, when applied to human activity is 
based upon the four basic ideas: (1) Emergence, (2) Hierarchy, (3) Communication, and 
(4) Control as characteristics of  systems.  

[Checkland] 

Emergence is often overlooked by systems engineers (those who seek to arrange a system) and 
managers (those who seek to arrange a system of  people). 
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When applied to natural or designed systems the crucial characteristic is the emergent 
properties of  the whole.  

[Checkland] 

Emergence is about the relationships that emerge among the parts of  a system when the 
parts combine. I illustrate emergence to systems engineers with a simple exercise. I give separate 
teams some parts and ask them to build something. Teams have built everything from decorative 
jewelry to robots. The parts I gave to each team were the same. The systems were vastly different 
because of  how the teams related the parts. The different relationships emerged. 

Consider a table, chair, and the floor as parts of  a system. I always see the table next-to the 
chair with both the table and chair upright-on the floor. The relationships are next-to and upright-on. 
Now consider the table upright-on the floor and the chair upright-on-top-of the table. That is a very 
different system comprising the same parts. The difference between the systems is the relationships 
that emerged. 

Now consider a group of  people as a system. Some groups of  people become highly 
efficient, effective, and fun teams, i.e. they jell. Other groups of  people self-destruct in that they 
accomplish nothing except creating ill feelings towards one another. The difference is the same as 
the differences with the chair, table, and floor mentioned previously – the relationships that emerge. 

The relationships among the chair, table, and floor are arranged by the systems engineer. 
The relationships among the people in a group are arranged by the group's manager. Sometimes the 
manager allows the people to arrange themselves and emerge their own relationships. Self-arranging 
is a type of  arranging that I have seen work well many times. 

Hierarchy describes how systems comprise parts where many of  the parts are systems in 
themselves. While writing this, I am sitting in a coffee shop with a Christmas tree in front of  me. 
The Christmas tree is a system made of  the tree, a string of  lights, and glass ornaments. The tree – a 
part of  the Christmas tree system – is itself  a system comprising a base, trunk, and branches. The 
string of  lights – a part of  the Christmas tree system – is also a system in itself  comprising wire, light 
fixtures, and light bulbs. The light bulbs are also a system made of  glass bulbs, a filament, and an 
electrical interface.  

Each level of  the hierarchy of  systems has its own emergent properties. Consider the tree in 
the Christmas tree hierarchy. The base is at-the-bottom-of the trunk. The branches extend-outward-from 
the trunk. This makes sense, that is a tree, but suppose the base was parallel-to-and-beside the trunk and 
the branches were also parallel-to-and-beside the trunk. That describes a chopped up tree sitting on the 
curb waiting for the garbage truck – not the same system as the Christmas tree. 

The same properties of  hierarchy and emergence at each level of  the hierarchy hold for 
groups of  people. Large teams comprise smaller teams that comprise smaller teams. Relationships 
among teams and individual people emerge at each level of  the hierarchy. In addition, individual 
people are able to reach out and emerge relationships with other individuals on remote teams. For 
example, I am in team A and my cousin is in team Z in another city. We have no relationship in the 
system diagram, but in reality we have a strong relationship – we are cousins. How can a manager 
manage that? Should a manager even try? Thousands of  such informal yet strong relationships 
emerge in large teams of  people. At times I wonder how people ever accomplish anything given all 
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the possible relationships that can exist. That, however, is a marvelous characteristic of  people. We 
are able to function and thrive in the face of  almost unimaginable complexity. 

Communication is the transfer of  information that reduces uncertainty. Moving information 
that doesn't reduce uncertainty isn't communication. It is merely wasted effort. 

The communication in a system moves through the interfaces of  the system (refer back to 
the chapter on Interfaces). The interfaces define how communication occurs and what types of  
information is moved. Sometimes the communication is simple shouts between field workers 
controlling irrigation gates. Sometimes it is computer-to-computer transfers of  databases regarding 
restaurant and supplier inventories.  

Consider the three systems mentioned above: the table, chair, and floor, the Christmas tree, 
and the group of  people. The table, chair, and floor don't communicate; they don't need to. The 
parts of  the Christmas tree communicate in a sense by sending the electricity through wires to the 
lights. That is an important communication when considering the function of  the tree, but it isn't 
sophisticated. The communication among the people in the group is different. Arranging a group of  
people into teams in a hierarchy reduces the amount of  communication necessary for the 
functioning of  the group. It doesn't, however, prohibit communication between my cousin and me 
working on different teams in different cities.  

Communication in open systems – those containing people – is far more complex than in 
closed systems – a table, chair, and floor. A manager cannot predict the communication in an open 
system of  hundreds of  people. An astute manager can understand the communication inside the 
group. An astute manager can also observe the communication inside the group and use it for the 
good of  the group. 

Control steers a system in a desired direction under changing circumstances. In one sense, 
control allows the systems engineer to identify everything that is part of a system. Observe what 
changes when control is applied to a system. Everything that changes is part of  the system. Careful 
observation has often surprised me. I noticed things that weren't supposed to be part of  the system 
move with the system. Hence, those things were in fact part of  the system. I just didn't know it yet. 

There are hundreds of  volumes of  books available on control and control theory. I consider 
the basics to be: 

1. What is the system doing? 

2. What is the system supposed to be doing? 

3. Move the system from 1. closer to 2. 

Point 1. comes from asking questions (refer to the chapter on Questions) and observation. 
Point 2. comes from the customer's requirements. Point 3., the control action, comes through 
communication to and inside the system. This action intends to move the system closer to 2. Once 
the action is complete, the control cycle returns to point 1. 

The systems concept comes together in terms of  control. The systems engineer cannot 
control a system unless communication exists inside the system. This communication doesn't exist 
unless the systems engineer understands the hierarchy of  the system. The systems engineer cannot 
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understand the hierarchy without understanding the relationships in the system that emerge when 
parts become systems.  

False Precision 

There's no sense being precise about something when you don't even know what you're 
talking about.  

John Von Neumann quoted from [Weinberg 1988] 

Earlier in this book I described techniques for using a spreadsheet to score alternatives when 
designing a system. That is part of  the trade off  and decision-making process. That method can lead 
to disaster, with the danger coming from false precision. 

As a systems engineer, I cannot judge the value of  an alternative to five decimal places. 
When, however, I put a few numbers in a spreadsheet, the computer calculates results to many 
decimal places. That is a great sense of  false security. 

I keep a slide rule on my desk at work (for those of  you who attended high school in the 
1980s and later, please look up “slide rule” on that new-fangled Internet thing). I use it to help me 
estimate things without having a false sense of  precision. The slide rule provides about three 
significant digits of  precision. So, 0.8 divided by 0.3 is about 2.7 or so. That is good enough 
precision. Especially since most of  the time the 0.8 and the 0.3 are imprecise value judgments. 

General Systems Thinking advises me that I really don't know what I am talking about most 
of  the time. I shouldn't fool myself  into thinking otherwise. 

Purity and Learning 

Purity is the enemy of  learning.  

[Weinberg&Weinberg 1988] 

Systems engineering can be messy; that can be great, but it may not seem so at the time. The 
systems engineer should be aware of  the desire for a neat, orderly, step-by-step approach that pops 
out the correct answer on time. 

There are two reasons I have for not trying to be perfect. First, it is a waste of  time. Systems 
engineers are human, and humans are not perfect. Second, if  by some chance I am able to make 
things perfect, I won't learn much. 

For many years, I tried to use a perfect step-by-step approach to solving problems and 
engineering systems. I typically used the best approach I had, but found myself  jumping ahead a few 
steps, retreating a few steps, jumping, retreating, circling, and somehow producing a system that 
satisfied the customer. 

I often had to wonder, "Was I cheating? Was there something wrong with the step-by-step 
approach? Was it bologna that some theorist created and never really used?" 

My conclusion has been, "No, I was learning. I had a mess, I tried to clean up the mess."  

I present a pure, step-by-step approach to systems engineering in this book. Please don't be 
disappointed if  you don't experience that approach.  
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I believe that you will frequently be working with your customer and jump to a "quick 
sketch" system design that satisfies them. When finished with a "quick sketch" or a "jump ahead" or 
a "let's not waste time with the steps" system, use the step-by-step method to check the answer. 

The quick sketch solution may be right. Sometimes I have been right with a quick sketch. 
Sometimes I was mostly right, or I was in the right direction, but I did forget a little here and there. 
Checking my answer with the step-by-step method improved my answer. Sometimes checking my 
answer saved me from catastrophe.  

General Systems Thinking tells me that I won't learn much in a neat and clean situation. My 
customer won't either. Learning usually leads to better systems, so relish a mess. 

The Aspirin Illusion 

Aspirin Illusion: The suppression of  pain instead of the eradication of  the disease for 
which the pain is a warning.  

[Weinberg&Weinberg 1988] 

I sometimes take painkillers like aspirin to suppress a headache. I rarely think about what 
caused my headache (stressful situations, stressful people, lack of  sleep, reading too much). Thinking 
about eradicating those things would be more work, but would yield a longer-lasting solution. 

The aspirin illusion brings to the systems engineer one of  the largest challenges. I love to 
solve the problem that a customer brings to me. Sometimes that specific problem is only the pain the 
customer feels; it is not the cause of  the pain. 

I recommend the systems engineer delve deeper into the situation the customer brings. 
Working the deeper, hidden situation will bring greater satisfaction to the customer. Be aware, 
however, that attempting to show the customer that he has a deeper, hidden problem may be 
hazardous to the health of  the systems engineer. Proceed with caution.  

Replacing Systems  

Much of  what the systems engineer does is replace the system a customer is using. I point to 
two "Laws of  Economic Behavior" (emphasis added).  

First Revised Law of  Economic Behavior: We will do today what we did yesterday 
unless there are good reasons for doing otherwise.  

Second Revised Law of  Economic Behavior: The good reasons which are necessary if  
we do not do today what we did yesterday are derived mainly from dissatisfaction with 
what we did yesterday or with what happened to us yesterday.  

[Boulding] 

The systems engineer is called when the customer is no longer satisfied with the system he 
used yesterday. There are good reasons for this dissatisfaction. The systems engineer should 
understand those reasons as they will drive the direction of  the new system.  

First, the systems engineer needs to ask for those reasons. The customer, in my experience, 
doesn't readily express them. Most of  this reticence is that the customer is embarrassed about past 
failures by either himself, his colleagues, or his predecessors.  
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Second, the systems engineer needs to ask for the real reasons for the change. I have often 
heard customers explain at great length why they wanted a new system. The more complex the 
explanation, the more likely the customer is providing a polite or political reason. They are hiding 
the real reasons and thereby withholding information that will determine the success or failure of  a 
future system.  

I encourage the systems engineer to explain Boulding's two laws and how understanding the 
good reasons for change are crucial to changing in the right direction.  

Progressive Complexity and Its Affects  

I have been building systems for over 25 years. The systems I build today are far more 
complex than those I built when I started. That may be more of  a condemnation than a 
commendation. Building progressively complex systems brings consequences.  

(1) Progressive Centralization: The tendency, as a system becomes more complex, for 
certain parts to become dominant. 

(2) Progressive Differentiation: The tendency, as a system becomes more complex, for 
parts to be specialized. 

(3) Progressive Integration: The tendency, as a system becomes more complex, for the 
parts to become increasingly dependent on the whole. 

[Checkland] 

From Progressive Centralization, the systems engineer should be careful of  a part or segment 
of  a system becoming dominant. The dominant part will determine the performance, reliability, 
usability, maintainability (and all the other -ility's you can name) of  the system. If  that part falters, all 
the “-ility's” in the system decrease. The extreme case of  Progressive Centralization is called "single-
point failure." This is when the failure of  a single part causes the entire system to fail. 

From Progressive Differentiation, specialized parts are troublesome. They are made one at a 
time by engineers acting as artists. Specialized parts are expensive to build, expensive to use, 
expensive to maintain (all those “-ility's” again), and expensive in many other ways. 

From Progressive Integration, the parts in a complex system depend on all other parts to 
function. When one part breaks, the system collapses soon after as the rest of  the parts fail. A 
complex system is less dependable than a simple system. 

From all three of  these, there are potential problems when a system becomes complex. Take 
care in building systems that are more and more complex. As a systems engineer, I can take great 
pride in my ability to build complex systems. If  I can build ever increasing complexity, I must be 
smarter. That is false pride. Being able to solve a complex problem with a simple system is better.  

Also, be careful not to confuse complex situations with complex systems. Simple systems 
can satisfy customers in complex situations; that is good. Complex systems can satisfy customers in 
simple situations; that is bad. Complex systems can satisfy customers in complex situations; that may 
be necessary, but it brings the potential problems from the three principles stated above. 

Strive for simplicity in systems.  



2010 © Dwayne Phillips - Page 110 

 

Equifinality  

Equifinality: A fundamental characteristic of  open systems, by which the same goal is 
reached from different starting points and in different ways.  

[Checkland]  

I am sitting here in Fairfax County, Virginia in my 49th year of  life. There are many people 
in the same geographic and chronographic state. No two of  us, however, started in the same place. 
We are equifinal in that we started at different points, have moved through life in different ways, but 
have arrived at the same final state. We are people, and equifinality is a characteristic of  systems 
containing people.  

A computer is not equifinal. Consider several computers that each takes in a number, adds 3 
to that number, and displays the sum. For each computer to display the number 10, they must each 
take in the number 7. They can only reach the same final state – displaying a 10 – if  they start with 
the same initial state – inputting a 7. 

Computers (machines) are not equifinal. They are just machines that lack intelligence. 
Systems built from machines are this way as well; they are not equifinal. Equifinality usually applies 
only to people and other living things. 

Equifinality is one of  several General Systems Thinking principles that separates living things 
from machines. Living things and machines are different; a great mistake people often make is to 
treat the two the same. 

Open and Closed Systems  

Equifinality is a characteristic of  open systems. As stated about an open system:  

...it maintains its structure in the midst of  a through-put of  chemical material. It is not 
only a homeostatic control system, it is a self-maintaining system capable of  metabolism 
and digestion, that is, the intake of  substances which it uses in part to maintain or to 
extend its own structure. 

[Boulding] 

Warm-bloodied animals have a homeostatic control system. We are able to maintain a 
constant body temperature in the face of  changing temperatures in the environment. Maintaining 
this constant body temperature takes energy. Hence, we have to eat and drink to provide ourselves 
with the ability to maintain control of  our temperature.  

People are open systems. Computers are closed systems. While computers and their 
programs can be complex, they are simple when compared to humans and other open systems.  

A person, for example, can maintain a steady state. My body weight remains relatively 
constant. To the untrained, it may appear that my constant weight just happens that way without any 
effort. That is far from the truth. Complex processes in my body are constantly at work consuming, 
converting, and burning fuel so that I maintain a constant weight. I'm an engineer, not a biologist. I 
don't understand how any of  this works, but I know that it does. 

The steady state of  an open system is deceptive. Consider a group that had 100 people last 
year and has 100 this year. The group had 15 people leave and 15 new people arrive during the year. 
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Much happens in the group when people flow through it. The 15% turnover in this case is 
disruptive to the group, but people can manage that. What, however, would life in the group be like 
if  30 people left and were replaced? What if  it were 50? What if  it were 80? Life inside the group 
would be chaos, but seen from the outside, the group is at steady state. 

Failure to understand the concept of  steady state in an open system can be disastrous. 
Suppose a new person arrives to manage the group of  100 people. The manager sees the size of  the 
group at steady state and feels comfortable in tinkering with the group's culture and organization. 
The manager reasons that a few changes can't hurt much because this is a stable group. The 
manager's changes amplify the chaos in the group, 75 people leave the first month, and chaos turns 
to catastrophe. 

It seems that no one would be as simple-minded as this manager. The manager would surely 
understand the group's state and act wisely. I, however, have seen such actions from managers 
several times. They see a simple case of  steady state and assume that everything about the group is in 
steady state. 

Take care when working with open systems. There is more happening than what a steady 
state implies. Simple management or steering actions don't bring simple results. Adding 2 and 2 can 
bring 13. 

The Toilet Example 

Consider the basic household toilet mechanism in Figure 1. This is a closed system. It 
comprises the tank, the float, the regulation system, the water intake, the water output, the flush ball, 
and a few other parts. This is all nice and neat.  



2010 © Dwayne Phillips - Page 112 

 

 

Figure 1 - A Toilet Mechanism  

 

You push the handle. The flush ball rises, the tank empties, the flush ball falls, the valve 
opens, and the water flows into the tank until the rising float closes the valve. Each toilet begins this 
cycle with a full tank and ends with a full tank. The toilets are not equifinal. They reach the same 
final state only from the same initial state. They are machines. 

This would be true, except that I started the previous paragraph with, "you push the handle."  

That means the system has a person in it. The person makes this an open system. What is 
the person thinking? Is the person an adult? Is the person a child who has just realized he is 
controlling a hydrodynamic system and wants to play? Is their a drought in the area and people are 
encouraged to conserve water? Is the toilet's flush ball faulty (sticky, misshapen) causing leaks and 
requiring the person to intervene? All these extra things – many of  them quite complex in nature – 
come when a person arrives and the toilet becomes an open system. 

The simple toilet now becomes an impossibly complex problem for the systems engineer to 
work. The systems engineer must first identify the customer we are trying to satisfy. Is he: 

 The child playing with the handle? 

 The parent paying the water bill? 
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 The utility company trying to judge the water needs of  the community? 

 The other engineers trying to design the toilet's control system? 

These people are all involved with the system. Satisfying all of  them is not possible. The 
systems engineer will need to trade off  the needs of  each person against those of  everyone else. 

Another fundamental problem for the systems engineer is examining the entire system and 
applying wisdom. What is the entire system? If  the system comprises only the mechanical items in 
Figure 1, the job is much easier – a basic closed system. If, as explained above, the system includes a 
person with their hand on the handle, the systems engineer faces a complex open system. Providing 
a system that covers 100% of the possible situations included in the open system is almost 
impossible. It is not wise to attempt. At the other extreme, covering 10% of the possible situations is 
feasible, but wouldn't satisfy the customer. 

I recommend the systems engineer take advantage of the open system. A person is present, 
and one of  the fundamental tenants of  General Systems Thinking is that people are wonderfully 
capable. People are able to function in complex, changing, and unprecedented situations. Build a 
mechanical, closed subsystem (Figure 1) that works 50% to 75% of the time. Let the person – the 
open subsystem of  the system – take care of  everything else. 

Observing 
As noted in the chapters on Questions and Thinking, observation is a key activity of  the 

systems engineer. I reinforce this notion with: 

Of all the things we'd like to teach systems analysts, the art of  observation seems to be 
the most elusive. 

[Weinberg 1988] 

Observing or noticing is one thing I have done well most of  my life. My studies in General 
Systems Thinking have improved this skill. At times I don't understand how other people don't 
observe better than they do. I am sure they wonder about me regarding other things.  

Learning to observe can be helped with a “Black Box.” 

In our daily lives we are confronted at every turn with systems whose internal 
mechanisms are not fully open to inspection, and which must be treated by the methods 
appropriate to the Black Box.  

William Ross Ashby from [Weinberg 1988] 

A black box is a system whose internal workings are hidden. The toilet mechanism from 
Figure 1 is a black box in my bathroom until I remove the lid. Then I can see inside and observe 
how everything is supposed to work. 

Weinberg [Weinberg 2001] discusses at length a black box machine that he uses in exercises 
to give learners a chance to practice observing.  

I have created my own version of  a black box for exercises using a computer. The observer 
presses a key and watches what appears on the screen. I use simple things in my computer black box 
such as taking the input key, adding five to it, and displaying the sum. Given such a simple concept 



2010 © Dwayne Phillips - Page 114 

 

it seems that people would be able to tell me what happens inside the hidden computer program, 
but I have yet to receive a complete answer. 

Observing people is like observing a black box. I don't know what is happening inside the 
other person. I can sometimes guess, sometimes guess pretty well, but I never know. People can be 
deceptive. Sometimes deception is their goal. Sometimes, however, they are trying to display on the 
outside what they are experiencing on the inside, but their efforts and my observations yield 
misunderstandings.  

An advantage to observing people is that I can ask what is happening on the inside. That can 
help. A disadvantage to observing a person is that asking starts a conversation that itself  is fraught 
with misunderstanding. 

Observing is more than seeing. Seeing is my preference for gathering information. I often 
use the expressions “Oh, I see” “Do you see what I mean?” and “I get the picture.” Don't let my 
tendency toward these and other phrases mislead you. Listen, smell, taste, and touch when 
observing. These other senses can provide the key piece of  information to the systems engineer.  

The systems engineer should observe three things: the customer, the system, and the 
environment. Observe the customer while asking questions, while he thinks, while he uses his 
current system, and while he tries the system you are providing. Does the customer's voice tremble? 
Does the customer's hands shake? What is the customer's posture? Is the customer perspiring in an 
air-conditioned room? Are there tears in the customer's eyes?  

Observe the system that the customer currently uses. There is a system there even though it 
may be 100% people. What happens in the system? Who is in the system? What role does each item 
in the system play? What appears to be the most important part of  the system? The least important? 
The most ignored? The most strained? 

Observe the environment surrounding the customer and the system. What is the 
temperature, humidity, and atmospheric pressure? What time of  day, week, month, and year does the 
system operate? What are the emotions in the environment? 

When observing, try to sense changes as these are strong clues to what is really happening 
inside the black box of  the customer and the system. Consider my computer black box; I press an 
“a” and an “f” appears on the screen. What is the change “a” to “f”? What does that mean?  

Watch the changes in the customer. Consider the person who is leaning back in a chair with 
legs out stretched and crossed and hands behind their head. I ask a question, and they lean forward, 
plant both feet flat on the floor shoulder width apart, and place their hands firmly on their knees. 
That change in posture means something. Sure that seems obvious, but what about when a small 
tear appears in the corner of  the customer's eye? That is a tiny physical change indicating something 
major is happening inside the customer. 

Closing Thoughts 
One conclusion I have drawn from studying General Systems Thinking is: 

Be alert when your systems contain people 



2010 © Dwayne Phillips - Page 115 

 

People are not the same as machines. Healthy people are not programmable like computers; 
they do not respond to button pushes with machine-like predictability. Programmable people, if  you 
ever encounter any, are suffering a malady. 

The systems discussed as examples in this book all contained people. They are all open 
systems fraught with and blessed by the improbable situations that come with people. Please pay 
attention to the actions of  people in the systems. When I have, I have been around much better 
systems.  

I hope that this chapter spurs some interest in General Systems Thinking. Please consult a 
few of  the references given below. 

Suggested Exercises  
1. Consider several of  your more enlightening conversations. What messages did you send and 

receive? How did these messages alter the image, i.e. the knowledge? 

2. Describe a trade off  that you are now considering on a system. Write specifically what 
benefit each option provides and what loss each option incurs. 

3. Write some of  the better questions you or other people have asked you. Extrapolate these 
questions to General Systems Thinking and systems engineering. 

4. Describe some of  the better and worse side effects that emerged from systems that you built 
or used. 

5. Consider a few cases where you were in a mess while building a system. What were some of  
your bigger lessons learned about systems engineering? What were some of  your bigger 
lessons learned about yourself? 

6. Describe a situation in which a customer did not convey their dissatisfaction with what they 
did yesterday, i.e. their old system. How many systems did you have to build to satisfy the 
customer? How could you have better learned of  the customer's dissatisfaction? 

7. Describe a problem you have experienced in building complex systems. How could those 
problems been prevented by building a simpler system? 

8. Describe some unexpected situations caused by people in systems. 

References with Notes 
I end this chapter a little differently. The books listed below are not all used in the chapter. I 

include a few others that have influenced my thoughts on General Systems Thinking. I also include a 
note with each reference to help describe the book. 

[Bertalanffy] "General Systems Theory - Foundations, Development, Applications," Ludwig 
von Bertalanffy, George Braziller, Inc., 1968. 

A treatise on the field written by its creator. 

[Boulding] "The Image - Knowledge in Life and Society," Kenneth E. Boulding, The 
University of  Michigan Press, 1956. 

A wonderfully philosophic book. I had to read this one slowly and I enjoyed it immensely. 
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[Checkland] "Systems Thinking, Systems Practice," Peter Checkland, John Wiley and Sons, 
1981. 

A good discussion of  the field highlighting its core principles. 

[Davidson] "Uncommon Sense, The Life and Thought of  Ludwig von Bertalanffy, Father of  
General Systems Theory," Mark Davidson, J.P. Tarcher, Inc., 1983. 

If  you read only one book on the subject, read this one. It covers both the principles of  the field as well as gives 
a biography of  its founder. 

[Weinberg 2001] “An Introduction to General Systems Thinking,” Gerald M. Weinberg, 
Dorset House Publishing, 2001. 

This is a second release of  1975's “An Introduction to General Systems Thinking” published by John Wiley 
and Sons. The 1975 printing was the first volume in a series on General Systems Thinking. 

[Weinberg and Weinberg] “General Principles of  Systems Design,” Daniela Weinberg and 
Gerald M. Weinberg, Dorset House Publishing, 1988. 

This is a second release of  1979's “On the Design of  Stable Systems” published by John Wiley and Sons. 
The 1979 printing was the second volume in Weinberg's series on General Systems Thinking. 

[Weinberg 1988] "Rethinking Systems Analysis and Design," Gerald M. Weinberg, Dorset 
House Publishing, 1988. 

Weinberg reconsiders what he wrote a decade earlier in light of  further experience. Some of  his concepts are 
repeated, some amplified, and some altered. 
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 Where We are Now 

We are now at the end of  the book. 

For me, systems engineering is at one end or another of  a spectrum. It is the simplest thing I 
know – understand the situation and work to satisfy the customer. It is also the largest and most 
difficult thing to grasp – understand the situation and work to satisfy the customer. 

To this day, at the end of  writing all these words, I sometimes struggle when someone asks, 
“What is systems engineering?” 

I stammer, “Well, you know, you're engineering an entire system, not just parts of  it. You 
know, that end-to-end kind of  thing.” 

On good days, I pause, and say, “A customer comes to you with a situation, a system they 
want to replace. Examine the entire situation wisely and work until the customer is satisfied.” 

That philosophic answer is correct for me, but not satisfactorily precise for many. For those 
I add,  

 Understand the requirements 

 Sketch an architecture 

 Define and maintain the interfaces 

 Be able to trace up and down through the levels of  the design 

 Keep all this information readily available 

Never forget the people in the system. They have wonderful capabilities and their presence 
makes it all worth the effort. 


